Stability of travelling wavefronts in discrete reaction-diffusion equations with nonlocal delay effects

被引:28
|
作者
Guo, Shangjiang [1 ]
Zimmer, Johannes [2 ]
机构
[1] Hunan Univ, Coll Math & Econometr, Changsha 410082, Hunan, Peoples R China
[2] Univ Bath, Dept Math Sci, Bath BA2 7AY, Avon, England
基金
国家教育部博士点专项基金资助; 英国工程与自然科学研究理事会;
关键词
travelling waves; time delay; global stability; Fisher-KPP equation; weighted energy; Green functions; NICHOLSONS BLOWFLIES EQUATION; ASYMPTOTIC STABILITY; NONLINEAR STABILITY; PROPAGATION FAILURE; CONVOLUTION MODEL; SEMIFLOWS; EXISTENCE; DYNAMICS; BEHAVIOR; SPREAD;
D O I
10.1088/0951-7715/28/2/463
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with travelling wavefronts for temporally delayed, spatially discrete reaction-diffusion equations. Using a combination of the weighted energy method and the Green function technique, we prove that all noncritical wavefronts are globally exponentially stable, and critical wavefronts are globally algebraically stable when the initial perturbations around the wavefront decay to zero exponentially near minus infinity regardless of the magnitude of time delay.
引用
收藏
页码:463 / 492
页数:30
相关论文
共 50 条