Unveiling secret interactions among sterile neutrinos with big-bang nucleosynthesis

被引:46
|
作者
Saviano, Ninetta [1 ]
Pisanti, Ofelia [2 ,3 ]
Mangano, Gianpiero [3 ]
Mirizzi, Alessandro [4 ]
机构
[1] Univ Durham, Dept Phys, Inst Particle Phys Phenomenol, Durham DH1 3LE, England
[2] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy
[3] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy
[4] Univ Hamburg, Inst Theoret Phys 2, D-22761 Hamburg, Germany
来源
PHYSICAL REVIEW D | 2014年 / 90卷 / 11期
关键词
PRIMORDIAL ABUNDANCE; DARK-MATTER; OSCILLATIONS; BOUNDS; HE-4;
D O I
10.1103/PhysRevD.90.113009
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Short-baseline neutrino anomalies suggest the existence of low-mass [m similar to O(1) eV] sterile neutrinos upsilon(s). These would be efficiently produced in the early universe by oscillations with active neutrino species, leading to a thermal population of the sterile states seemingly incompatible with cosmological observations. In order to relieve this tension it has been recently speculated that new "secret" interactions among sterile neutrinos, mediated by a massive gauge boson X (with M-X << M-W), can inhibit or suppress the sterile neutrino thermalization, due to the production of a large matter potential term. We note however, that they also generate strong collisional terms in the sterile neutrino sector that induce an efficient sterile neutrino production after a resonance in matter is encountered, increasing their contribution to the number of relativistic particle species N-eff. Moreover, for values of the parameters of the upsilon(s)-upsilon(s) interaction for which the resonance takes place at temperature T less than or similar to few MeV, significant distortions are produced in the electron (anti) neutrino spectra, altering the abundance of light element in big bang nucleosynthesis (BBN). Using the present determination of He-4 and deuterium primordial abundances we determine the BBN constraints on the model parameters. We find that H-2/H density ratio exclude much of the parameter space if one assumes a baryon density at the best fit value of Planck experiment, Omega(B)h(2) = 0.02207, while bounds become weaker for a higher Omega(B)h(2) = 0.02261, the 95% C.L. upper bound of Planck. Due to the large error on its experimental determination, the helium mass fraction Y-p gives no significant bounds.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] RECONCILING STERILE NEUTRINOS WITH BIG-BANG NUCLEOSYNTHESIS
    FOOT, R
    VOLKAS, RR
    [J]. PHYSICAL REVIEW LETTERS, 1995, 75 (24) : 4350 - 4353
  • [2] Neutrinos and Big-Bang nucleosynthesis
    Kajino, T
    Orito, M
    [J]. NUCLEAR PHYSICS A, 1998, 629 (1-2) : 538C - 544C
  • [3] Big Bang Nucleosynthesis constraints on sterile neutrino secret interactions
    Saviano, Ninetta
    [J]. NUCLEAR AND PARTICLE PHYSICS PROCEEDINGS, 2015, 265 : 60 - 62
  • [4] Heavy sterile neutrinos: bounds from big-bang nucleosynthesis and SN 1987A
    Dolgov, AD
    Hansen, SH
    Raffelt, G
    Semikoz, DV
    [J]. NUCLEAR PHYSICS B, 2000, 590 (03) : 562 - 574
  • [5] BIG-BANG NUCLEOSYNTHESIS CONSTRAINTS ON MASSIVE, UNSTABLE NEUTRINOS
    STEIGMAN, G
    [J]. NUCLEAR PHYSICS B, 1995, : 74 - 85
  • [6] Big-bang nucleosynthesis
    K. A. Olive
    [J]. The European Physical Journal C - Particles and Fields, 2000, 15 (1-4): : 133 - 135
  • [7] BIG-BANG NUCLEOSYNTHESIS
    K.A.Olive
    K.Agashe
    C.Amsler
    M.Antonelli
    J.-F.Arguin
    D.M.Asner
    H.Baer
    H.R.Band
    R.M.Barnett
    T.Basaglia
    C.W.Bauer
    J.J.Beatty
    V.I.Belousov
    J.Beringer
    G.Bernardi
    S.Bethke
    H.Bichsel
    O.Biebe
    E.Blucher
    S.Blusk
    G.Brooijmans
    O.Buchmueller
    V.Burkert
    M.A.Bychkov
    R.N.Cahn
    M.Carena
    A.Ceccucci
    A.Cerr
    D.Chakraborty
    M.-C.Chen
    R.S.Chivukula
    K.Copic
    G.Cowan
    O.Dahl
    G.D’Ambrosio
    T.Damour
    D.de Florian
    A.de Gouvea
    T.DeGrand
    P.de Jong
    G.Dissertor
    B.A.Dobrescu
    M.Doser
    M.Drees
    H.K.Dreiner
    D.A.Edwards
    S.Eidelman
    J.Erler
    V.V.Ezhela
    W.Fetscher
    [J]. Chinese Physics C, 2014, 38 (09) : 339 - 344
  • [8] BIG-BANG NUCLEOSYNTHESIS
    STEIGMAN, G
    [J]. NUCLEAR PHYSICS B, 1995, : 68 - 73
  • [9] Big-bang nucleosynthesis limit on the neutral fermion decays into neutrinos
    Kusakabe, Motohiko
    Balantekin, A. B.
    Kajino, Toshitaka
    Pehlivan, Y.
    [J]. PHYSICAL REVIEW D, 2013, 87 (08):
  • [10] Effects of sterile neutrinos and an extra dimension on big bang nucleosynthesis
    Jang, Dukjae
    Kusakabe, Motohiko
    Cheoun, Myung-Ki
    [J]. PHYSICAL REVIEW D, 2018, 97 (04)