Solubility of carotenoids in supercritical CO2

被引:26
|
作者
Shi, John [1 ]
Mittal, Gauri
Kim, Erin
Xue, Sophia Jun
机构
[1] Agr & Agri Food Canada, Guelph Food Res Ctr, Guelph, ON, Canada
[2] Univ Guelph, Sch Engn, Guelph, ON N1G 2W1, Canada
关键词
cartenoids; extraction; supercritical fluid; solubility;
D O I
10.1080/87559120701593806
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
Carotenoids have been shown to provide a range of health benefits and to decrease the risk of disease. Although carotenoids are naturally present in plants advanced extraction technologies to remove carotenoids from plant materials are needed to prepare concentrated materials. Because carotenoids are sensitive to heat, oxygen, and light, large-scale supercritical fluid extraction (SFE) has drawn attention as a separation technology. SFE with solvents such as CO2 offers an organic-chemical-free process that yields quality end food products, compared to traditional extraction methods that organic solvents. In the SFE process for plant materials, an important step is to measure and predict the solubility of target components in the supercritical fluid at various pressure and temperature conditions to optimize the extraction process. The solubility of targeted carotenoids in supercritical fluids is related to its physical and chemical properties such as polarity, molecular structure, and nature of the material particles, and it is also related to the operating conditions such as temperature, pressure, density of solvent and co-solvents, and solvent flow rate in the supercritical region. The solubility of beta-carotene, alpha-carotene, and other carotenoids under different extraction conditions has been reviewed. It would be interesting and useful for researchers and food industries to compare the data of the solubility of carotenoids to develop optimum extraction process and to get maximum yields.
引用
下载
收藏
页码:341 / 371
页数:31
相关论文
共 50 条
  • [1] Solubility of supercritical CO2 in polystyrene
    Versteeg, Friso G.
    Lima, Guilherme de M. R.
    Picchioni, Francesco
    Druetta, Pablo
    JOURNAL OF SUPERCRITICAL FLUIDS, 2024, 213
  • [2] Solubility of crystalline tricosane in supercritical CO2 and CO2 + cosolvents
    I. Sh. Khabriev
    L. Yu. Sabirova
    I. Z. Salikhov
    L. Yu. Yarullin
    V. F. Khairutdinov
    T. R. Bilalov
    I. M. Abdulagatov
    Thermophysics and Aeromechanics, 2023, 30 : 955 - 960
  • [3] Solubility of crystalline tricosane in supercritical CO2 and CO2 + cosolvents
    Khabriev, I. Sh.
    Sabirova, L. Yu.
    Salikhov, I. Z.
    Yarullin, L. Yu.
    Khairutdinov, V. F.
    Bilalov, T. R.
    Abdulagatov, I. M.
    THERMOPHYSICS AND AEROMECHANICS, 2023, 30 (05) : 955 - 960
  • [4] Solubility of polymers and copolymers in supercritical CO2
    Rindfleisch, F
    DiNoia, TP
    McHugh, MA
    JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (38): : 15581 - 15587
  • [5] Solubility of technical oils in supercritical CO2
    Dahmen, N
    Schmieder, H
    Schon, J
    Wilde, H
    HIGH PRESSURE CHEMICAL ENGINEERING, 1996, 12 : 515 - 518
  • [6] SOLUBILITY OF SOME PESTICIDES IN SUPERCRITICAL CO2
    SCHAFER, K
    BAUMANN, W
    FRESENIUS ZEITSCHRIFT FUR ANALYTISCHE CHEMIE, 1988, 332 (02): : 122 - 124
  • [7] SOLUBILITY OF TRIETHYLENE GLYCOL IN SUPERCRITICAL CO2
    YONEMOTO, T
    CHAROENSOMBUTAMON, T
    KOBAYASHI, R
    FLUID PHASE EQUILIBRIA, 1990, 55 (1-2) : 217 - 229
  • [8] Correlation of the Solubility of Solids in Supercritical CO2
    张翔
    孟莹
    蔡建国
    邓修
    华东理工大学学报(自然科学版), 2007, (04) : 450 - 455
  • [9] A NOVEL SOLUBILITY MODEL IN A SUPERCRITICAL CO2
    Qian, Yongfang
    Li, Na
    Li, Ya
    Liu, Yanping
    THERMAL SCIENCE, 2018, 22 (04): : 1853 - 1856
  • [10] Solubility of disperse dyes in supercritical CO2
    Tušek, Lidija
    Golob, Vera
    Chemische Technik (Leipzig), 1999, 51 (02): : 79 - 83