Counting Ω-ideals

被引:1
|
作者
Protasov, Igor V. [1 ]
机构
[1] Kyiv Univ, Dept Cybernet, UA-01033 Kiev, Ukraine
关键词
Boolean algebra; Omega-ideal; ballean;
D O I
10.1007/s00012-010-0032-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be a universal algebra of signature Omega, and let I be an ideal in the Boolean algebra P(A) of all subsets of A. We say that I is an Omega-ideal if I contains all finite subsets of A and f(A(n)). I for every n-ary operation f epsilon Omega and every A epsilon I. We prove that there are 2(2 aleph 0) Omega-ideals in PA provided that A is countably infinite and Omega is countable.
引用
下载
收藏
页码:339 / 343
页数:5
相关论文
共 50 条
  • [1] Counting Ω-ideals
    Igor V. Protasov
    Algebra universalis, 2009, 62 : 339 - 343
  • [2] Counting ideals in ray classes
    Gun, Sanoli
    Ramare, Olivier
    Sivaraman, Jyothsnaa
    JOURNAL OF NUMBER THEORY, 2023, 243 : 13 - 37
  • [3] COUNTING SINGULARITIES VIA FITTING IDEALS
    Jorge-Perez, V. H.
    Miranda, A. J.
    Saia, M. J.
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2012, 23 (06)
  • [4] Counting integral ideals in a number field
    Murty, M. Ram
    Van Order, Jeanine
    EXPOSITIONES MATHEMATICAE, 2007, 25 (01) : 53 - 66
  • [5] Counting the ideals with given genus of a numerical semigroup
    Moreno-Frias, M. A.
    Rosales, J. C.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2023, 22 (08)
  • [6] Counting the Ideals with a Given Genus of a Numerical Semigroup with Multiplicity Two
    Moreno-Frias, M. A.
    Rosales, Jose Carlos
    SYMMETRY-BASEL, 2021, 13 (05):
  • [7] Counting the Ideals of Given Codimension of the Algebra of Laurent Polynomials in Two Variables
    Kassel, Christian
    Reutenauer, Christophe
    MICHIGAN MATHEMATICAL JOURNAL, 2018, 67 (04) : 715 - 741
  • [8] Radical computations of zero-dimensional ideals and real root counting
    Becker, E
    Wormann, T
    MATHEMATICS AND COMPUTERS IN SIMULATION, 1996, 42 (4-6) : 561 - 569
  • [9] Explicit counting of ideals and a Brun-Titchmarsh inequality for the Chebotarev density theorem
    Debaene, Korneel
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2019, 15 (05) : 883 - 905
  • [10] (λ, μ)-Fuzzy Version of Ideals, Interior Ideals, Quasi-Ideals, and Bi-Ideals
    Feng, Yuming
    Corsini, P.
    JOURNAL OF APPLIED MATHEMATICS, 2012,