Automated Real-time Risk Assessment for Airport Passengers Using a Deep Learning Architecture

被引:5
|
作者
Thomopoulos, Stelios C. A. [1 ]
Daveas, Stelios [1 ]
Danelakis, Antonis [1 ]
机构
[1] Natl Ctr Sci Res Demokritos, Inst Informat & Telecommun, Integrated Syst Lab, Patr Gregoriou E & 27 Neapoleos Str, Aghia Paraskevi 15341, Greece
基金
欧盟地平线“2020”;
关键词
Security Systems; Risk Assessment; Crowd Simulation; Deep Learning;
D O I
10.1117/12.2519857
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Airport control check points are required to operate and maintain modern security systems preventing malicious actions. This paper presents a methodology, introduced in the context of the FLYSEC project [30], that provides real-time risk assessment for airport passengers based on their trajectories. The proposed methodology implements a deep learning architecture. It is fully automated, reducing the workload of the video surveillance operators making leading to less error-prone conclusions. It has been integrated with the Command & Control System (C2) of iCrowd, a crowd simulation platform developed by the Integrated Systems Lab of the Institute of Informatics and Telecommunications in NCSR Demokritos. iCrowd features a highly-configurable, high-fidelity agent-based behavior simulator and provides a realistic environment that enables behaviors of simulated actors (e.g. passengers, personnel, malicious actors), instantiates the functionality of hardware security technologies, and simulates passengers' facilitation and customer service. iCrowd has been used for conducting experiments on simulated scenarios in order to evaluate the proposed risk assessment scheme. The experimental results indicate that the proposed risk assessment scheme is very promising and can reliably be used in an airport security frame for evaluating and/or enveloping security tracking systems performance.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Real-time driving risk assessment using deep learning with XGBoost
    Shi, Liang
    Qian, Chen
    Guo, Feng
    ACCIDENT ANALYSIS AND PREVENTION, 2022, 178
  • [2] Real-Time Human Action Recognition Using Deep Learning Architecture
    Kahlouche, Souhila
    Belhocine, Mahmoud
    Menouar, Abdallah
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE AND APPLICATIONS, 2021, 20 (04)
  • [3] Real-time vehicular accident prevention system using deep learning architecture
    Kabir, Md Faysal
    Roy, Sahadev
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 206
  • [4] Deep learning approach on shark attack risk assessment using real-time autonomous surveillance systems
    Barbelian, Mihai Alexandru
    Dinu, Cornel
    Pietreanu, Casandra Venera
    UPB Scientific Bulletin, Series D: Mechanical Engineering, 2021, 83 (04): : 61 - 72
  • [5] Deep learning architecture search for real-time image denoising
    Hernandez, Esau A. Hervert
    Cao, Yan
    Kehtarnavaz, Nasser
    REAL-TIME IMAGE PROCESSING AND DEEP LEARNING 2022, 2022, 12102
  • [6] Real-Time Surveillance Using Deep Learning
    Iqbal, Muhammad Javed
    Iqbal, Muhammad Munwar
    Ahmad, Iftikhar
    Alassafi, Madini O.
    Alfakeeh, Ahmed S.
    Alhomoud, Ahmed
    SECURITY AND COMMUNICATION NETWORKS, 2021, 2021
  • [7] Real-Time Automated Segmentation of Median Nerve in Dynamic Ultrasonography Using Deep Learning
    Yeh, Cheng-Liang
    Wu, Chueh-Hung
    Hsiao, Ming-Yen
    Kuo, Po-Ling
    ULTRASOUND IN MEDICINE AND BIOLOGY, 2023, 49 (05): : 1129 - 1136
  • [8] Real-Time Automated Classification of Sky Conditions Using Deep Learning and Edge Computing
    Czarnecki, Joby M. Prince
    Samiappan, Sathishkumar
    Zhou, Meilun
    McCraine, Cary Daniel
    Wasson, Louis L.
    REMOTE SENSING, 2021, 13 (19)
  • [9] Automated, near real-time inspection of commercial sUAS imagery using deep learning
    Kawatsu, Chris
    Purman, Ben
    Zhao, Aaron
    Gillies, Andy
    Jeffers, Mike
    Sheridan, Paul
    UNMANNED SYSTEMS TECHNOLOGY XX, 2018, 10640
  • [10] Real-time automated risk assessment in protected core networking
    Konrad Wrona
    Geir Hallingstad
    Telecommunication Systems, 2010, 45 : 205 - 214