Compression of Hyperspectral Images using Adaptive Luminance Transform

被引:0
|
作者
Can, Ergun [1 ]
Karaca, Ali Can [2 ]
Danisman, Mehmetali [2 ]
Urhan, Oguzhan [2 ]
Gullu, M. Kemal [2 ]
机构
[1] Piri Reis Univ, Elekt Elekt Muhendisligi, Istanbul, Turkey
[2] Kocaeli Univ, Elekt & Haberlesme Muhendisligi, Kocaeli, Turkey
关键词
Luminance transform; correlation matrix; 3D-DCT;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, compression of hyperspectral images with luminance transform is explained. First, similar image bands are grouped on hyperspectral image and luminance transform is performed independently on these groups. After luminance transform,, compression is carried out by using discrete cosine transform (3D-DCT), quantization and entropy coding, for each group. In experimental studies, compression performances are measured using signal-to- noise ratio and bit rates. The proposed method increases signal-to- noise ratio 10 dB at 0.1 bit-per-pixel compared to 3D-DCT based compression.
引用
下载
收藏
页数:4
相关论文
共 50 条
  • [1] Compression of hyperspectral images using automatic adaptive luminance transform and 3D-DCT method
    Can, Ergun
    Karaca, Ali Can
    Urhan, Oguzhan
    Gullu, Mehmet Kemal
    PAMUKKALE UNIVERSITY JOURNAL OF ENGINEERING SCIENCES-PAMUKKALE UNIVERSITESI MUHENDISLIK BILIMLERI DERGISI, 2020, 26 (05): : 868 - 883
  • [2] Prediction and Compression of Multi-temporal Hyperspectral Images using Luminance Transform
    Karaca, Ali Can
    Gullu, M. Kemal
    2018 26TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2018,
  • [3] COMPRESSION OF HYPERSPECTRAL IMAGES USING LUMINANCE TRANSFORM AND 3D-DCT
    Can, Ergun
    Karaca, Ali Can
    Danisman, Mehmetali
    Urhan, Oguzhan
    Gullu, M. Kemal
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 5073 - 5076
  • [4] Compression for hyperspectral images using three dimensional wavelet transform
    Lim, S
    Sohn, K
    Lee, C
    IGARSS 2001: SCANNING THE PRESENT AND RESOLVING THE FUTURE, VOLS 1-7, PROCEEDINGS, 2001, : 109 - 111
  • [5] Compression of Hyperspectral Images Using Discerete Wavelet Transform and Tucker Decomposition
    Karami, Azam
    Yazdi, Mehran
    Mercier, Gregoire
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2012, 5 (02) : 444 - 450
  • [6] Adaptive lossy compression and classification of hyperspectral images
    Minguillón, J
    Pujol, J
    Serra-Sagristà, J
    Ortuño, I
    Guitart, P
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING VI, 2001, 4170 : 214 - 225
  • [7] Lossless Compression of Hyperspectral Images Using Adaptive Prediction and Backward Search Schemes
    Lin, Cheng-Chen
    Hwang, Yin-Tsung
    JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, 2011, 27 (02) : 419 - 435
  • [8] Lossy compression of hyperspectral images using shearlet transform and 3D SPECK
    Karami, A.
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XXI, 2015, 9643
  • [9] Lossless Compression of Hyperspectral Images using Adaptive Edge-based Prediction
    Wang, Keyan
    Wang, Liping
    Liao, Huilin
    Song, Juan
    Li, Yunsong
    SATELLITE DATA COMPRESSION, COMMUNICATIONS, AND PROCESSING IX, 2013, 8871
  • [10] Hyperspectral images adaptive dimensionality reduction optimized by JM transform
    Kang X.
    Zhang A.
    Hu S.
    Xiao Q.
    Chai S.
    Yaogan Xuebao/Journal of Remote Sensing, 2020, 24 (01): : 67 - 75