High performance wire-array silicon solar cells

被引:75
|
作者
Gunawan, O. [1 ]
Wang, K. [1 ]
Fallahazad, B. [2 ]
Zhang, Y. [1 ]
Tutuc, E. [2 ]
Guha, S. [1 ]
机构
[1] IBM TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA
[2] Univ Texas Austin, Dept Elect & Comp Engn, Austin, TX 78758 USA
来源
PROGRESS IN PHOTOVOLTAICS | 2011年 / 19卷 / 03期
基金
美国国家科学基金会;
关键词
PHOTOVOLTAIC APPLICATIONS; NANOSPHERE LITHOGRAPHY; NANOWIRE ARRAYS; FABRICATION; ABSORPTION;
D O I
10.1002/pip.1027
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Nano/micro-wire silicon solar cells, consisting of wire-arrays of radial p-n junction structures, are expected to offer performance enhancement at lower costs, using smaller volumes of low carrier lifetime, cheaper silicon. Using inexpensive microsphere-lithography-based fabrication that is scalable to large areas, we have demonstrated wire-array solar cells that outperform the control cell. Key to the design of these cells is the impact of various parameters, such as wire diameter and junction depth, that influences the competing effects of light trapping ability of the wire-array, quantum efficiency, and series resistance of the resulting device. Using capacitance measurements we can identify two possible types of junction structure in a wire-array solar cell: radial and planar. We show that the former is the prerequisite for performance-enhancing wire-array solar cells. Copyright (C) 2010 John Wiley & Sons, Ltd.
引用
收藏
页码:307 / 312
页数:6
相关论文
共 50 条
  • [1] CAPACITANCE ANALYSIS OF WIRE-ARRAY SOLAR CELL
    Gunawan, Oki
    Fallahazad, Babak
    Tutuc, Emanuel
    Guha, Supratik
    35TH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE, 2010,
  • [2] High Performance Nanopillars Array Silicon Solar Cells
    Pudasaini, Pushpa Raj
    Ayon, Arturo A.
    2013 SYMPOSIUM ON DESIGN, TEST, INTEGRATION AND PACKAGING OF MEMS/MOEMS (DTIP), 2013,
  • [3] Macroporous silicon as a model for silicon wire array solar cells
    Maiolo, James R., III
    Atwater, Harry A.
    Lewis, Nathan S.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (15): : 6194 - 6201
  • [4] Enhancement of Shock Wave Generated by Underwater Electrical Wire-Array Explosion at a Fixed Energy and Mass of Wire-Array
    Qian, Dun
    Liu, Zhigang
    Li, Liuxia
    Zou, Xiaobing
    Wang, Xinxin
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2020, 48 (10) : 3373 - 3377
  • [5] Development of instabilities in wire-array Z pinches
    Chittenden, J. P.
    Jennings, C. A.
    PHYSICAL REVIEW LETTERS, 2008, 101 (05)
  • [6] Theory of wire number scaling in wire-array Z pinches
    Desjarlais, MP
    Marder, BM
    PHYSICS OF PLASMAS, 1999, 6 (05) : 2057 - 2064
  • [7] Theory of wire number scaling in wire-array Z pinches
    Desjarlais, M.P.
    Marder, B.M.
    Physics of Plasmas, 1999, 6 (5 I): : 2057 - 2064
  • [8] Magnetohydrodynamic Simulation of Tungsten Wire in Wire-Array Z Pinch
    Kim, D.-K.
    Chittenden, J. P.
    Lebedev, S. V.
    Marocchino, A.
    Suzuki-Vidal, F.
    CONTRIBUTIONS TO PLASMA PHYSICS, 2010, 50 (02) : 115 - 120
  • [9] Wire-array holder critical in high wire-number Z-pinch implosions
    Sanford, TWL
    Mock, RC
    Gilliland, TL
    Seamen, JF
    Leeper, RJ
    Watt, RG
    Chrien, RE
    Idzorek, GC
    Peterson, DL
    Duselis, PU
    PPC-2003: 14TH IEEE INTERNATIONAL PULSED POWER CONFERENCE, VOLS 1 AND 2, DIGEST OF TECHNICAL PAPERS, 2003, : 733 - 736
  • [10] High aspect ratio silicon wire array photoelectrochemical cells
    Maiolo, III, James R.
    Kayes, Brendan M.
    Filler, Michael A.
    Putnam, Morgan C.
    Kelzenberg, Michael D.
    Atwater, Harry A.
    Lewis, Nathan S.
    Journal of the American Chemical Society, 2007, 129 (41): : 12346 - 12347