Generalized Anderson's theorem for superconductors derived from topological insulators

被引:32
|
作者
Andersen, Lionel [1 ]
Ramires, Aline [2 ,3 ,4 ]
Wang, Zhiwei [1 ]
Lorenz, Thomas [1 ]
Ando, Yoichi [1 ]
机构
[1] Univ Cologne, Phys Inst 2, D-50937 Cologne, Germany
[2] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
[3] ICTP SAIFR, BR-01140070 Sao Paulo, SP, Brazil
[4] Univ Estadual Paulista, Inst Fis Teor, BR-01140070 Sao Paulo, SP, Brazil
来源
SCIENCE ADVANCES | 2020年 / 6卷 / 09期
基金
巴西圣保罗研究基金会;
关键词
STATES;
D O I
10.1126/sciadv.aay6502
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A well-known result in unconventional superconductivity is the fragility of nodal superconductors against nonmagnetic impurities. Despite this common wisdom, Bi2Se3 -based topological superconductors have recently displayed unusual robustness against disorder. Here, we provide a theoretical framework that naturally explains what protects Cooper pairs from strong scattering in complex superconductors. Our analysis is based on the concept of superconducting fitness and generalizes the famous Anderson's theorem into superconductors having multiple internal degrees of freedom with simple assumptions such as the Born approximation. For concreteness, we report on the extreme example of the Cu-x(PbSe)(5)(BiSe3)(6) superconductor. Thermal conductivity measurements down to 50 mK not only give unambiguous evidence for the existence of nodes but also reveal that the energy scale corresponding to the scattering rate is orders of magnitude larger than the superconducting energy gap. This provides the most spectacular case of the generalized Anderson's theorem protecting a nodal superconductor.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] CPT theorem and classification of topological insulators and superconductors
    Hsieh, Chang-Tse
    Morimoto, Takahiro
    Ryu, Shinsei
    [J]. PHYSICAL REVIEW B, 2014, 90 (24):
  • [2] Generalized Hall currents in topological insulators and superconductors
    Kaplan, David B.
    Sen, Srimoyee
    [J]. PHYSICAL REVIEW D, 2023, 108 (04)
  • [3] From topological insulators to superconductors and confinement
    Diamantini, M. Cristina
    Sodano, Pasquale
    Trugenberger, Carlo A.
    [J]. NEW JOURNAL OF PHYSICS, 2012, 14
  • [4] Topological Insulators and Topological Superconductors
    Lovesey, S. W.
    [J]. CONTEMPORARY PHYSICS, 2014, 55 (04) : 353 - 354
  • [5] Topological insulators and superconductors
    Qi, Xiao-Liang
    Zhang, Shou-Cheng
    [J]. REVIEWS OF MODERN PHYSICS, 2011, 83 (04)
  • [6] Generalization of Anderson's theorem for disordered superconductors
    Dodaro, John F.
    Kivelson, Steven A.
    [J]. PHYSICAL REVIEW B, 2018, 98 (17)
  • [7] Photonic topological Anderson insulators
    Simon Stützer
    Yonatan Plotnik
    Yaakov Lumer
    Paraj Titum
    Netanel H. Lindner
    Mordechai Segev
    Mikael C. Rechtsman
    Alexander Szameit
    [J]. Nature, 2018, 560 : 461 - 465
  • [8] Photonic topological Anderson insulators
    Stutzer, Simon
    Plotnik, Yonatan
    Lumer, Yaakov
    Titum, Paraj
    Lindner, Netanel H.
    Segev, Mordechai
    Rechtsman, Mikael C.
    Szameit, Alexander
    [J]. NATURE, 2018, 560 (7719) : 461 - +
  • [9] Topological insulators and superconductors from string theory
    Ryu, Shinsei
    Takayanagi, Tadashi
    [J]. PHYSICAL REVIEW D, 2010, 82 (08):
  • [10] Topological Crystalline Insulators and Topological Superconductors: From Concepts to Materials
    Ando, Yoichi
    Fu, Liang
    [J]. ANNUAL REVIEW OF CONDENSED MATTER PHYSICS, VOL 6, 2015, 6 : 361 - 381