Bayesian inference for dynamic social network data

被引:52
|
作者
Koskinen, Johan H. [1 ]
Snijders, Tom A. B.
机构
[1] Univ Melbourne, Dept Psychol, Parkville, Vic 3010, Australia
[2] Stockholm Univ, Dept Stat, S-10691 Stockholm, Sweden
[3] Univ Oxford Nuffield Coll, Oxford OX1 1NF, England
[4] Univ Groningen, Dept Sociol, NL-9700 AB Groningen, Netherlands
关键词
longitudinal social networks; data augmentation; Bayesian inference; random graphs;
D O I
10.1016/j.jspi.2007.04.011
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a continuous-time model for the evolution of social networks. A social network is here conceived as a (di-) graph on a set of vertices, representing actors, and the changes of interest are creation and disappearance over time of (arcs) edges in the graph. Hence we model a collection of random edge indicators that are not, in general, independent. We explicitly model the interdependencies between edge indicators that arise from interaction between social entities. A Markov chain is defined in terms of an embedded chain with holding times and transition probabilities. Data are observed at fixed points in time and hence we are not able to observe the embedded chain directly. Introducing a prior distribution for the parameters we may implement an MCMC algorithm for exploring the posterior distribution of the parameters by simulating the evolution of the embedded process between observations. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:3930 / 3938
页数:9
相关论文
共 50 条
  • [1] Estimating uncertainty and reliability of social network data using Bayesian inference
    Farine, Damien R.
    Strandburg-Peshkin, Ariana
    [J]. ROYAL SOCIETY OPEN SCIENCE, 2015, 2 (09):
  • [2] An extension of the differential approach for Bayesian network inference to dynamic Bayesian networks
    Brandherm, B
    Jameson, A
    [J]. INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2004, 19 (08) : 727 - 748
  • [3] Dynamic Knowledge Inference Based on Bayesian Network Learning
    Wang, Deyan
    AmrilJaharadak, Adam
    Xiao, Ying
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
  • [4] Dynamic Bayesian Network Modeling, Learning, and Inference: A Survey
    Shiguihara, Pedro
    Lopes, Alneu De Andrade
    Mauricio, David
    [J]. IEEE ACCESS, 2021, 9 : 117639 - 117648
  • [5] Bayesian inference of private social network links using prior information and propagated data
    SeyedHassani, Amirreza
    Haghighi, Mohammad Sayad
    Khonsari, Ahmad
    [J]. JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2019, 125 : 72 - 80
  • [6] Bayesian Inference of Dynamic Mediation Models for Longitudinal Data
    Zhao, Saijun
    Zhang, Zhiyong
    Zhang, Hong
    [J]. STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2024, 31 (01) : 14 - 26
  • [7] Causal Inference for Social Network Data
    Ogburn, Elizabeth L.
    Sofrygin, Oleg
    Diaz, Ivan
    van der Laan, Mark J.
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2024, 119 (545) : 597 - 611
  • [8] Bayesian inference of network structure from unreliable data
    Young, Jean-Gabriel
    Cantwell, George T.
    Newman, M. E. J.
    [J]. JOURNAL OF COMPLEX NETWORKS, 2020, 8 (06) : 1 - 26
  • [9] A Fuzzy-Dynamic Bayesian Network Approach for Inference Filtering
    Mittelmann, Munyque
    Marchi, Jerusa
    von Wangenheim, Aldo
    [J]. ARTIFICIAL INTELLIGENCEAND SOFT COMPUTING, PT I, 2019, 11508 : 314 - 323
  • [10] Integrating Epigenetic Prior in Dynamic Bayesian Network for Gene Regulatory Network Inference
    Chen, Haifen
    Maduranga, D. A. K.
    Mundra, Piyushkumar A.
    Zheng, Jie
    [J]. PROCEEDINGS OF THE 2013 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY (CIBCB), 2013, : 76 - 82