A Document-based Data Model for Large Scale Computational Maritime Situational Awareness

被引:0
|
作者
Cazzanti, Luca [1 ]
Millefiori, Leonardo M. [1 ]
Arcieri, Gianfranco [1 ]
机构
[1] NATO STO Ctr Maritime Res & Experimentat CMRE, La Spezia, Italy
关键词
computational MSA; AIS; MongoDB; NoSQL; IDENTIFICATION SYSTEM AIS; CLUSTERING-ALGORITHM;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Computational Maritime Situational Awareness (MSA) supports the maritime industry, governments, and international organizations with machine learning and big data techniques for analyzing vessel traffic data available through the Automatic Identification System (AIS). A critical challenge of scaling computational MSA to big data regimes is integrating the core learning algorithms with big data storage modes and data models. To address this challenge, we report results from our experimentation with MongoDB, a NoSQL documentbased database which we test as a supporting platform for computational MSA. We experiment with a document model that avoids database joins when linking position and voyage AIS vessel information and allows tuning the database index and document sizes in response to the AIS data rate. We report results for the AIS data ingested and analyzed daily at the NATO Centre for Maritime Research and Experimentation (CMRE).
引用
收藏
页码:1350 / 1356
页数:7
相关论文
共 50 条
  • [1] A Computational Model of Cyber Situational Awareness
    Dobson, Geoffrey B.
    Carley, Kathleen M.
    SOCIAL, CULTURAL, AND BEHAVIORAL MODELING, SBP-BRIMS 2018, 2018, 10899 : 395 - 400
  • [2] Extensible Document-Based Model Web Engineering
    Lecarpentier, Jean-Marc
    Brixtel, Romain
    Le Crosnier, Herve
    Bazin, Cyril
    2013 IEEE SEVENTH INTERNATIONAL CONFERENCE ON RESEARCH CHALLENGES IN INFORMATION SCIENCE (RCIS), 2013,
  • [3] Document-Based HITS Model for Multi-document Summarization
    Wan, Xiaojun
    PRICAI 2008: TRENDS IN ARTIFICIAL INTELLIGENCE, 2008, 5351 : 454 - 465
  • [4] Maritime Linked Data for Situational Awareness Heterogeneous Sensor Networks
    Camossi, Elena
    Grasso, Raffaele
    Ferri, Gabriele
    Faggiani, Alessandro
    LePage, Kevin
    Carniel, Sandro
    OCEANS 2021: SAN DIEGO - PORTO, 2021,
  • [5] Spatio-temporal Data Mining for Maritime Situational Awareness
    Arguedas, Virginia Fernandez
    Mazzarella, Fabio
    Vespe, Michele
    OCEANS 2015 - GENOVA, 2015,
  • [6] DOCUMENT-BASED DIRICHLET CLASS LANGUAGE MODEL FOR SPEECH RECOGNITION USING DOCUMENT-BASED N-GRAM EVENTS
    Haidar, Md. Akmal
    O'Shaughnessy, Douglas
    2014 IEEE WORKSHOP ON SPOKEN LANGUAGE TECHNOLOGY SLT 2014, 2014, : 42 - 47
  • [7] MULTI-SENSOR DATA FUSION TO ENHANCE MARITIME SITUATIONAL AWARENESS
    Morando, Elena
    Daffina, Filippo Christian
    Stahl, Torbjorn
    Corvino, Maria Michela
    Pratola, Chiara
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 6829 - 6831
  • [8] CRUSOE: Data Model for Cyber Situational Awareness
    Komarkova, Jana
    Husak, Martin
    Lastovicka, Martin
    Tovarnak, Daniel
    13TH INTERNATIONAL CONFERENCE ON AVAILABILITY, RELIABILITY AND SECURITY (ARES 2018), 2019,
  • [9] Large-scale network security situational awareness based on association rule research
    Ai, Hong
    2013 2ND INTERNATIONAL SYMPOSIUM ON INSTRUMENTATION AND MEASUREMENT, SENSOR NETWORK AND AUTOMATION (IMSNA), 2013, : 767 - 770
  • [10] Terms Mining in Document-Based NoSQL: Response to Unstructured Data
    Lomotey, Richard K.
    Deters, Ralph
    2014 IEEE INTERNATIONAL CONGRESS ON BIG DATA (BIGDATA CONGRESS), 2014, : 661 - 668