The study of a novel artificial neural network based on hybrid PSO-BP algorithm

被引:0
|
作者
Chen, Ying [1 ]
Zhu, Qiguang
Li, Zhiquan
机构
[1] Yanshan Univ, Inst Elect Engn, Qinhuangdao 066004, Peoples R China
[2] Yanshan Univ, Inst Informat Sci & Engn, Qinhuangdao 066004, Peoples R China
关键词
artificial neural network (ANN); particle swarm; optimization (PSO) algorithm; back-propagation (BP) algorithm; polarization mode dispersion (PMD) compensation; degree of polarization (DOP);
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An artificial neural network (ANN) based on hybrid algorithm combining particle swarm optimization (PSO) algorithm with back-propagation (BP) algorithm has been introduced to compensate the polarization mode dispersion (PMD) in the ultra-high speed optical communication system. The hybrid algorithm, also referred to as PSO-BP algorithm, has been adopted to train the weights of ANN, and it can make use of not only strong global searching ability of the PSO algorithm, but also strong local searching ability of the BP algorithm. In the proposed algorithm, a heuristic way was adopted to give a transition from particle swarm search to gradient descending search. The experimental results show that the hybrid algorithm is better than the Adaptive PSO algorithm and BP algorithm in convergent speed and convergent accuracy. And in the PMD compensation system, the ANN is used to optimize the degree of polarization (DOP) signal, which can achieve the stochastic PMD compensation adaptively. Simulation results show that the opening of eye diagram can be improved obviously.
引用
收藏
页码:358 / 362
页数:5
相关论文
共 50 条
  • [1] A Novel Hybrid PSO-BP Algorithm for Neural Network Training
    Liu, Jun
    Qiu, Xiaohong
    INTERNATIONAL JOINT CONFERENCE ON COMPUTATIONAL SCIENCES AND OPTIMIZATION, VOL 1, PROCEEDINGS, 2009, : 300 - +
  • [2] A novel artificial neural network based on hybrid PSO-BP algorithm in the application of adaptive PMD compensation system
    Chen, Ying
    Zhu, Qiguang
    Li, Zhiquan
    ADVANCES IN NEURAL NETWORKS - ISNN 2007, PT 3, PROCEEDINGS, 2007, 4493 : 311 - +
  • [3] Study of a new improved PSO-BP neural network algorithm
    Zhang, Li
    Zhao, Jia-Qiang
    Zhang, Xu-Nan
    Zhang, Sen-Lin
    Journal of Harbin Institute of Technology (New Series), 2013, 20 (05) : 106 - 112
  • [4] Study of a New Improved PSO-BP Neural Network Algorithm
    Li Zhang
    Jia-Qiang Zhao
    Xu-Nan Zhang
    Sen-Lin Zhang
    Journal of Harbin Institute of Technology(New series), 2013, 20 (05) : 106 - 112
  • [5] Network traffic prediction algorithm research based on PSO-BP neural network
    Wei, Cheng
    Peng, Feng
    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS RESEARCH AND MECHATRONICS ENGINEERING, 2015, 121 : 1239 - 1243
  • [6] PCA-Based PSO-BP Neural Network Optimization Algorithm
    Shi, Lan
    Tang, Xu
    Lv, Hanhui
    2015 27TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2015, : 1720 - 1725
  • [7] PSO-BP Combined Artificial Neural Network Method Research
    Liu, Guiling
    Gao, Feng
    ADVANCES IN CIVIL AND INDUSTRIAL ENGINEERING, PTS 1-4, 2013, 353-356 : 3537 - 3540
  • [8] Research on pump fault diagnosis based on pso-bp neural network algorithm
    Sang, Jinguo
    PROCEEDINGS OF 2019 IEEE 8TH JOINT INTERNATIONAL INFORMATION TECHNOLOGY AND ARTIFICIAL INTELLIGENCE CONFERENCE (ITAIC 2019), 2019, : 1748 - 1752
  • [9] A Proposed Model for Predicting the Drilling Path Based on Hybrid Pso-Bp Neural Network
    Elons, A. S.
    Magdi, Dalia Ahmed
    Elgendy, M. Y.
    PROCEEDINGS OF THE 2016 SAI COMPUTING CONFERENCE (SAI), 2016, : 148 - 155
  • [10] Classification Prediction of Rockburst in Railway Tunnel Based on Hybrid PSO-BP Neural Network
    Zhang, Min
    GEOFLUIDS, 2022, 2022