Two-step series estimation and specification testing of (partially) linear models with generated regressors

被引:1
|
作者
Hsu, Yu-Chin [1 ,2 ,3 ]
Liao, Jen-Che [2 ]
Lin, Eric S. [4 ]
机构
[1] Acad Sinica, Inst Econ, Taipei, Taiwan
[2] Natl Chengchi Univ, Dept Econ, Taipei, Taiwan
[3] Natl Cent Univ, Dept Finance, Taoyuan, Taiwan
[4] Dept Econ, Hsinchu, Taiwan
关键词
Linear and nonlinear generated regressors; partially linear model; semiparametric linear model; series estimation; specification tests; SEMIPARAMETRIC ESTIMATION; NONPARAMETRIC-ESTIMATION; EFFICIENT ESTIMATION; INFERENCE; DEMAND; GROWTH;
D O I
10.1080/07474938.2022.2082169
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper studies three semiparametric models that are useful and frequently encountered in applied econometric work-a linear and two partially linear specifications with generated regressors, i.e., the regressors that are unobserved, but can be nonparametrically estimated from the data. Our framework allows for generated regressors to appear in linear or nonlinear components of partially linear models. We propose two-step series estimators for the finite-dimensional parameters, establish their root n-consistency (with sample size n) and asymptotic normality, and provide the asymptotic variance formulae that take into account the estimation error of generated regressors. Moreover, we develop a nonparametric specification test for the models considered. Numerical performances of the proposed estimators and test via simulation experiments and an empirical application illustrate the utility of our approach.
引用
收藏
页码:985 / 1007
页数:23
相关论文
共 50 条