Global Well-Posedness for Cubic NLS with Nonlinear Damping

被引:18
|
作者
Antonelli, Paolo [1 ]
Sparber, Christof [1 ]
机构
[1] Univ Cambridge, CMS, Dept Appl Math & Theoret Phys, Cambridge CB3 0WA, England
关键词
Dissipation; Energy space; Nonlinear damping; Nonlinear Schrodinger equation; Three-body recombination; GINZBURG-LANDAU EQUATION; SCHRODINGER-EQUATIONS; QUADRATIC POTENTIALS; ASYMPTOTIC-BEHAVIOR; CAUCHY-PROBLEM; PERTURBATION; SCATTERING; EXISTENCE;
D O I
10.1080/03605300903540943
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the Cauchy problem for the cubic nonlinear Schrodinger equation, perturbed by (higher order) dissipative nonlinearities. We prove global in-time existence of solutions for general initial data in the energy space. In particular we treat the energy-critical case of a quintic dissipation in three space dimensions.
引用
收藏
页码:2310 / 2328
页数:19
相关论文
共 50 条
  • [1] Global well-posedness for the cubic fractional NLS on the unit disk
    Sy, Mouhamadou
    Yu, Xueying
    NONLINEARITY, 2022, 35 (04) : 2020 - 2072
  • [2] Strichartz estimates and global well-posedness of the cubic NLS on T2
    Herr, Sebastian
    Kwak, Beomjong
    FORUM OF MATHEMATICS PI, 2024, 12
  • [3] GLOBAL WELL-POSEDNESS OF THE PERIODIC CUBIC FOURTH ORDER NLS IN NEGATIVE SOBOLEV SPACES
    Oh, Tadahiro
    Wang, Yuzhao
    FORUM OF MATHEMATICS SIGMA, 2018, 6
  • [4] Well-posedness and scattering of inhomogeneous cubic-quintic NLS
    Cho, Yonggeun
    JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (08)
  • [5] Sharp well-posedness for the cubic NLS and mKdV in Hs(R)
    Harrop-Griffiths, Benjamin
    Killip, Rowan
    Visan, Monica
    FORUM OF MATHEMATICS PI, 2024, 12
  • [6] Well-posedness for the NLS hierarchy
    Adams, Joseph
    JOURNAL OF EVOLUTION EQUATIONS, 2024, 24 (04)
  • [7] On the well-posedness for NLS in Hs
    Fang, Daoyuan
    Han, Zheng
    JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 264 (06) : 1438 - 1455
  • [8] Global Well-Posedness of the Cubic Nonlinear Schrodinger Equation on Closed Manifolds
    Hani, Zaher
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2012, 37 (07) : 1186 - 1236
  • [9] Global Well-Posedness of the NLS System for Infinitely Many Fermions
    Thomas Chen
    Younghun Hong
    Nataša Pavlović
    Archive for Rational Mechanics and Analysis, 2017, 224 : 91 - 123
  • [10] Global Well-Posedness of the Energy-Critical Defocusing NLS on
    Ionescu, Alexandru D.
    Pausader, Benoit
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2012, 312 (03) : 781 - 831