Short-Term Load Forecasting Based on Kernel Conditional Density Estimation

被引:0
|
作者
Dudek, Grzegorz [1 ]
机构
[1] Czestochowa Tech Univ, Inst Power Engn, PL-42200 Czestochowa, Poland
来源
PRZEGLAD ELEKTROTECHNICZNY | 2010年 / 86卷 / 08期
关键词
short-term load forecasting; kernel density estimation; nonparametric regression;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A short-term load forecasting model based on the kernel estimation of the conditional probability density distribution is proposed. The pattern vector of the load time series sequence can be treated as the multivariate random variable whose value determines the pattern component values of the next sequence, which is forecasted. Probability density functions are obtained from historical load time series by means of nonparametric density estimation. This approach uses the product kernel estimators. The kernel function smoothing parameters are determined using cross-validation procedure. The suitability of the proposed approach is illustrated through applications to real load data.
引用
收藏
页码:164 / 167
页数:4
相关论文
共 50 条
  • [1] Kernel regression based short-term load forecasting
    Agarwal, Vivek
    Bougaev, Anton
    Tsoukalas, Lefteri
    ARTIFICIAL NEURAL NETWORKS - ICANN 2006, PT 2, 2006, 4132 : 701 - 708
  • [2] Short-term load probabilistic forecasting based on quantile regression convolutional neural network and Epanechnikov kernel density estimation
    He, Hui
    Pan, Junting
    Lu, Nanyan
    Chen, Bo
    Jiao, Runhai
    ENERGY REPORTS, 2020, 6 : 1550 - 1556
  • [3] Short-term Load Forecasting Based on Conditional Generative Adversarial Network
    Lin S.
    Wang H.
    Qi L.
    Feng H.
    Su Y.
    Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2021, 45 (11): : 52 - 60
  • [4] A Learnable Kernel Machine for Short-Term Load Forecasting
    Zhang, Lin
    Dai, Guang
    Cao, Yijia
    Zhai, Guixiang
    Liu, Zhaoyan
    2009 IEEE/PES POWER SYSTEMS CONFERENCE AND EXPOSITION, VOLS 1-3, 2009, : 555 - +
  • [5] Nonparametric conditional density estimation in a deep learning framework for short-term forecasting
    Huberman, David B.
    Reich, Brian J.
    Bondell, Howard D.
    ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2022, 29 (04) : 677 - 704
  • [6] Short-term Load Probabilistic Forecasting Based on Conditional Enhanced Diffusion Model
    Liu, Jinxiang
    Zhang, Jiangfeng
    Dong, Shanling
    Liu, Meiqin
    Zhang, Senlin
    Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2024, 48 (23): : 197 - 207
  • [7] Variable Selection in the Kernel Regression Based Short-Term Load Forecasting Model
    Dudek, Grzegorz
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, PT II, 2012, 7268 : 557 - 563
  • [8] A novel probabilistic short-term wind energy forecasting model based on an improved kernel density estimation
    Guan, Jiansheng
    Lin, Jie
    Guan, JianJie
    Mokaramian, Elham
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (43) : 23791 - 23808
  • [9] Correction: Nonparametric conditional density estimation in a deep learning framework for short-term forecasting
    David B. Huberman
    Brian J. Reich
    Howard D. Bondell
    Environmental and Ecological Statistics, 2022, 29 : 913 - 913
  • [10] The application of kernel covering algorithm on short-term load forecasting
    Liu, Chen
    Xiao, Zhigang
    Yu, Yao
    Li, Lihua
    2008 PROCEEDINGS OF INFORMATION TECHNOLOGY AND ENVIRONMENTAL SYSTEM SCIENCES: ITESS 2008, VOL 2, 2008, : 751 - 755