Effect of the leading-edge protuberances on the aeroacoustic and aerodynamic performances of the wind turbine airfoil

被引:8
|
作者
Zhang, Yinan [1 ,2 ]
Cao, Huijing [3 ]
Liu, Xia [4 ]
Qi, Liangwen [1 ,2 ,5 ]
机构
[1] Chinese Acad Sci, Inst Engn Thermophys, Beijing 100190, Peoples R China
[2] Key Lab Wind Energy Utilizat CAS, Beijing 100190, Peoples R China
[3] China Elect Power Planning & Engn Inst, Beijing 100120, Peoples R China
[4] Sinopec Sales Co Ltd, Jiangsu Changzhou Petr Branch, Changzhou 213000, Jiangsu, Peoples R China
[5] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Wind turbine airfoil; Leading-edge protuberances; Aeroacoustic and aerodynamic performances; Flow patterns; FLOW SEPARATION; TUBERCLES; NOISE; HYDROFOILS;
D O I
10.1016/j.oceaneng.2022.113153
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Based on the restraining effect of the leading-edge protuberances (LEPs) on flow separation, this work focuses analyzing the aeroacoustic and aerodynamic performances for the wind turbine airfoil with LEPs near the outboard region of the blades, by using the experimental testing and numerical calculation methods. The associated flow patterns for the aeroacoustic and aerodynamic performances are revealed within the pre-stall and post-stall regions. The shedding of the separation vortices enhances the instability of the laminar boundary layer, generating the aerodynamic noise from the wind turbine airfoil. The LEPs suppress the generation of the tonal noise in pre-stall region by changing the distribution and reducing the intensity of the trailing edge shedding vortices. Moreover, LEPs can improve the aerodynamic performance of the wind turbine airfoil greatly by inhibiting the flow separation at a high inflow angle of attack. As a flow control method for the wind turbine blades, LEPs will help to improve the aeroacoustic performance of the blades under normal inflow wind con-ditions, and the aerodynamic performance under extreme wind situations where the inflow wind changes on a large scale frequently.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Research on the aerodynamic performance of the wind turbine blades with leading-edge protuberances
    Zhang, Yinan
    Zhao, Mingzhi
    Zhang, Mingming
    OCEAN ENGINEERING, 2023, 280
  • [2] NUMERICAL INVESTIGATION ON THE AERODYNAMIC PERFORMANCE OF AN AIRFOIL WITH LEADING-EDGE PROTUBERANCES
    Cai, Chang
    Zuo, Zhigang
    Liu, Shuhong
    PROCEEDINGS OF THE ASME FLUIDS ENGINEERING DIVISION SUMMER MEETING, 2016, VOL 1A, 2016,
  • [3] A calculation method for modeling the flow characteristics of the wind turbine airfoil with leading-edge protuberances
    Zhang Yi-Nan
    Cao Hui-Jing
    Zhang Ming-Ming
    JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 2021, 212
  • [4] Mechanism of bionic leading-edge protuberances on the aerodynamic performance of horizontal axis wind turbine
    Wei, Xuntong
    Li, Deyou
    Chang, Hong
    Zhang, Ruiyi
    Yang, Qi
    Wang, Hongjie
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2024, 38 (12) : 6607 - 6620
  • [5] Investigation of leading-edge protuberances for the performance improvement of thick wind turbine airfoil1
    Zhang, Yi-Nan
    Cao, Hui-Jing
    Zhang, Ming-Ming
    JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 2021, 217
  • [6] Aerodynamic Control of Low-Reynolds-Number Airfoil with Leading-Edge Protuberances
    Zhang, M. M.
    Wang, G. F.
    Xu, J. Z.
    AIAA JOURNAL, 2013, 51 (08) : 1960 - 1971
  • [7] Effects of leading-edge protuberances on airfoil performance
    Johari, H.
    Henoch, C.
    Custodio, D.
    Levshin, A.
    AIAA Journal, 2007, 45 (11): : 2634 - 2642
  • [8] Effects of leading-edge protuberances on airfoil performance
    Johari, H.
    Henoch, C.
    Custodio, D.
    Levshin, A.
    AIAA JOURNAL, 2007, 45 (11) : 2634 - 2642
  • [9] Flow Physics behind the Effects of Leading-edge Protuberances on the Airfoil Aerodynamic Performance
    Zhao, Ming
    Zhang, Mingming
    Xu, Jianzhong
    SCIENCE OF MAKING TORQUE FROM WIND (TORQUE 2018), 2018, 1037
  • [10] Numerical study on aerodynamic performances of the wind turbine rotor with leading-edge rotation
    Zhuang, Yueqing
    Sun, Xiaojing
    Huang, Diangui
    Wu, Guoqing
    JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 2012, 4 (06)