Novel top-down methods for Hierarchical Text Classification

被引:3
|
作者
Cao Ying [1 ]
Duan run-ying [1 ]
机构
[1] Jiangxi Univ Sci & Technol, Modern Educ Technol & Informat Ctr, Ganzhou 341000, Jiangxi, Peoples R China
关键词
hierarchical classification; virtual category; top-down approach;
D O I
10.1016/j.proeng.2011.11.2651
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
To classify large-scale text corpora, one common approach is using hierarchical text classification and classifying text documents in a top-down manner. Classification methods using top-down approach can scale well and cope with changes to the category trees. However, all these methods suffer from a common problem: a high level of misclassification document has unrecoverable. We define an virtual subclass for each non-leaf category to help the rejected documents go back to ancestor category, thus improving the overall performance. Our experiments using Support Vector Machine (SVM) classifiers on the 20newsgroup collection have shown that they all could reduce blocking and improve the classification accuracy. Our experiments have also shown that the virtual category method delivered the best performance. (C) 2011 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of ICAE2011.
引用
收藏
页码:329 / 334
页数:6
相关论文
共 50 条
  • [1] ToSA: A Top-Down Tree Structure Awareness Model for Hierarchical Text Classification
    Zhao, Deji
    Ning, Bo
    Song, Shuangyong
    Wang, Chao
    Chen, Xiangyan
    Yu, Xiaoguang
    Zou, Bo
    [J]. WEB AND BIG DATA, PT II, APWEB-WAIM 2022, 2023, 13422 : 23 - 37
  • [2] Novel Top-Down Approaches for Hierarchical Classification and Their Application to Automatic Music Genre Classification
    Silla, Carlos N., Jr.
    Freitas, Alex A.
    [J]. 2009 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC 2009), VOLS 1-9, 2009, : 3499 - 3504
  • [3] New Top-Down Methods Using SVMs for Hierarchical Multilabel Classification Problems
    Cerri, Ricardo
    de Carvalho, Andre Carlos P. L. F.
    [J]. 2010 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS IJCNN 2010, 2010,
  • [4] HierFlat: flattened hierarchies for improving top-down hierarchical classification
    Naik A.
    Rangwala H.
    [J]. International Journal of Data Science and Analytics, 2017, 4 (3) : 191 - 208
  • [5] Inconsistent Node Flattening for Improving Top-down Hierarchical Classification
    Naik, Azad
    Rangwala, Huzefa
    [J]. PROCEEDINGS OF 3RD IEEE/ACM INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS, (DSAA 2016), 2016, : 379 - 388
  • [6] Top-down Strategies for Hierarchical Classification of Transposable Elements with Neural Networks
    Nakano, Felipe Kenji
    Pinto, Walter Jose
    Pappa, Gisele Lobo
    Cerri, Ricardo
    [J]. 2017 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2017, : 2539 - 2546
  • [7] TOP-DOWN LAYOUT FOR HIERARCHICAL CUSTOM DESIGN
    UEDA, K
    KITAZAWA, H
    ADACHI, T
    HARADA, I
    [J]. IEEE DESIGN & TEST OF COMPUTERS, 1987, 4 (06): : 22 - 29
  • [8] Hierarchical whitespace allocation in top-down placement
    Caldwell, AE
    Kahng, AB
    Markov, IL
    [J]. IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2003, 22 (11) : 1550 - 1556
  • [9] A top-down supervised learning approach to hierarchical multi-label classification in networks
    Romero, Miguel
    Finke, Jorge
    Rocha, Camilo
    [J]. APPLIED NETWORK SCIENCE, 2022, 7 (01)
  • [10] A top-down supervised learning approach to hierarchical multi-label classification in networks
    Miguel Romero
    Jorge Finke
    Camilo Rocha
    [J]. Applied Network Science, 7