Hypergraph Based Radio Resource Management in 5G Fog Cell

被引:0
|
作者
An, Xingshuo [1 ]
Lin, Fuhong [1 ,2 ]
机构
[1] Univ Sci & Technol Beijing, Sch Comp & Commun Engn, Beijing 100083, Peoples R China
[2] Univ Sci & Technol Beijing, Beijing Engn & Technol Res Ctr Convergence Networ, Beijing 100083, Peoples R China
基金
美国国家科学基金会;
关键词
Resource management; 5G; Fog computing; Hypergraph theory; MOBILE; SCENARIOS; INTERNET;
D O I
10.1007/978-3-319-94268-1_1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
5G is a hot topic of current research in the field of wireless communication, micro base stations will be widely deployed in large quantities. The traditional cloud computing paradigm is unable to effectively solve the problem of 5G resource management, such as limited system capacity and low utilization rate of resource management. As a new paradigm, fog computing has the characteristics of low delay and geo-distribution. It can enable the resource management of 5G. Fog nodes are cooperative and geo-distribution. In order to improve the capacity of the system and the utilization of resources, we need to allocate fog nodes for each task. To address this issue, we propose a concept of 5G fog Cell network architecture that can be implemented by Macro-eNB and fog node. In this model, we use Hypergraph theory to establish a task model, and we design a Hypergraph clustering algorithm to manage and allocate radio resource. Simulations demonstrate that the 5G fog Cell network performs better than traditional macro cell network in radio resource utilization.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 50 条
  • [1] Reinforcement Learning-Based Resource Management Model for Fog Radio Access Network Architectures in 5G
    Khumalo, Nosipho N.
    Oyerinde, Olutayo O.
    Mfupe, Luzango
    IEEE ACCESS, 2021, 9 : 12706 - 12716
  • [2] AI Based Network and Radio Resource Management in 5G HetNets
    Bartoli, Giulio
    Marabissi, Dania
    Pucci, Renato
    Ronga, Luca Simone
    JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2017, 89 (01): : 133 - 143
  • [3] AI Based Network and Radio Resource Management in 5G HetNets
    Giulio Bartoli
    Dania Marabissi
    Renato Pucci
    Luca Simone Ronga
    Journal of Signal Processing Systems, 2017, 89 : 133 - 143
  • [4] RAN Enablers for 5G Radio Resource Management
    Gutierrez-Estevez, D. M.
    Bulakci, O.
    Ericson, M.
    Prasad, A.
    Pateromichelakis, E.
    Belschner, J.
    Arnold, P.
    Calochira, G.
    2017 IEEE CONFERENCE ON STANDARDS FOR COMMUNICATIONS AND NETWORKING (CSCN), 2017, : 1 - 6
  • [5] AGILE RADIO RESOURCE MANAGEMENT TECHNIQUES FOR 5G NEW RADIO
    Prasad, Athul
    Benjebbour, Anass
    Bulakci, Omer
    Pedersen, Klaus I.
    Pratas, Nuno K.
    Mezzavilla, Marco
    IEEE COMMUNICATIONS MAGAZINE, 2017, 55 (06) : 62 - 63
  • [6] Radio Resource Management: The Vital Subject for Evolution to 5G
    Ali, Ayesha Haider
    Nazir, Mohsin
    2017 INTERNATIONAL SYMPOSIUM ON WIRELESS SYSTEMS AND NETWORKS (ISWSN), 2017,
  • [7] Survey of Radio Resource Management in 5G Heterogeneous Networks
    Manap, Sulastri
    Dimyati, Kaharudin
    Hindia, Mhd Nour
    Abu Talip, Mohamad Sofian
    Tafazolli, Rahim
    IEEE ACCESS, 2020, 8 : 131202 - 131223
  • [8] An LSTM-based cell association scheme for proactive bandwidth management in 5G fog radio access networks
    Manzoor, Sanaullah
    Mian, Adnan Noor
    Mazhar, Suleman
    INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS, 2021, 34 (15)
  • [9] ML-Based Radio Resource Management in 5G and Beyond Networks: A Survey
    Bartsiokas, Ioannis A.
    Gkonis, Panagiotis K.
    Kaklamani, Dimitra, I
    Venieris, Iakovos S.
    IEEE ACCESS, 2022, 10 : 83507 - 83528
  • [10] Smart spectrum and radio resource management for future 5G networks
    Lopez-Benitez, Miguel
    Raschella, Alessandro
    Pizzi, Sara
    Wang, Li
    Di Felice, Marco
    Chowdhury, Kaushik Roy
    COMPUTER NETWORKS, 2021, 193