Hua operators, Poisson transform and relative discrete series on line bundles over bounded symmetric domains

被引:6
|
作者
Koufany, Khalid [3 ]
Zhang, Genkai [1 ,2 ]
机构
[1] Chalmers, Dept Math, S-41296 Gothenburg, Sweden
[2] Gothenburg Univ, S-41296 Gothenburg, Sweden
[3] Univ Henri Poincare, Inst Elie Cartan, UMR 7502, F-54506 Vandoeuvre Les Nancy, France
关键词
Bounded symmetric domains; Shilov boundary; Invariant differential operators; Eigenfunctions; Poisson transform; Hua operators; INVARIANT DIFFERENTIAL-OPERATORS; TUBE TYPE; REPRESENTATIONS; KERNELS; SPACES;
D O I
10.1016/j.jfa.2012.02.012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For bounded symmetric domains Omega = G/K of tube type and general domains of type 1, we consider the action of G on sections of a homogeneous line bundle over Omega and the corresponding eigenspaces of G-invariant differential operators. The Poisson transform maps hyperfunctions on the Shilov boundary S=K/L to the eigenspaces. We characterize the image in terms of twisted Hua operators. For some special parameters the Poisson transform is of Szego type whose image is in a relative discrete series; we compute the corresponding elements in the discrete series. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:4140 / 4159
页数:20
相关论文
共 23 条