A specialized finite element for the study of woven composites

被引:6
|
作者
Haan, SI
Charalambides, PG
Suri, M
机构
[1] Univ Maryland Baltimore Cty, Dept Mech Engn, Baltimore, MD 21201 USA
[2] Univ Maryland Baltimore Cty, Dept Math & Stat, Baltimore, MD USA
关键词
D O I
10.1007/s004660100252
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A specialized finite element is developed for the study of woven composites. The element utilizes an asymptotic displacement expansion comprised of the homogenized displacements and the local microdisplacements associated with the woven unit-cell elastostatics. Basic trigonometric functions first developed in [1], are employed as solutions to the local woven unit-cell problem under a general state of in-plane loading. The formulation also incorporates robust unit-cell geometry models for both polymer and ceramic matrix woven systems. As a result, the element can be used to predict not only the macroscopic homogeneous elastic response but also the microscopic elastic response of a finite geometry of a woven composite subjected to a general in-plane as well as transverse bending loading. The element performance is demonstrated by solving the finite geometry uniaxial tension problem and via near-tip studies for a crack under mode-I, mode-II, and mixed mode fracture conditions. In each case, the specialized element predictions are compared to known solutions for a corresponding cracked orthotropic material subjected to the same macroscopic loading conditions as well as the approximate solutions obtained using the well established 4-noded isoparametric plane elasticity element.
引用
收藏
页码:445 / 462
页数:18
相关论文
共 50 条
  • [1] A specialized finite element for the study of woven composites
    S. I. Haan
    P. G. Charalambides
    M. Suri
    Computational Mechanics, 2001, 27 : 445 - 462
  • [2] Finite element simulation of woven fabric composites
    Le Page, BH
    Guild, FJ
    Ogin, SL
    Smith, PA
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2004, 35 (7-8) : 861 - 872
  • [3] Fiber reorientation in laminated and woven composites for finite element simulations
    Tabiei, A
    Ivanov, I
    JOURNAL OF THERMOPLASTIC COMPOSITE MATERIALS, 2003, 16 (05) : 457 - 474
  • [4] Finite element analysis of vibration damping for woven fabric composites
    Nakanishi, Yasumasa
    Matsumoto, Kin'ya
    Zako, Masaru
    Yamada, Yukiko
    ADVANCES IN COMPOSITE MATERIALS AND STRUCTURES, PTS 1 AND 2, 2007, 334-335 : 213 - +
  • [5] Benchmark Study of Finite Element Models for Simulating the Thermostamping of Woven-Fabric Reinforced Composites
    J. Sargent
    J. Chen
    J. Sherwood
    J. Cao
    P. Boisse
    A. Willem
    K. Vanclooster
    S. V. Lomov
    M. Khan
    T. Mabrouki
    K. Fetfatsidis
    D. Jauffrès
    International Journal of Material Forming, 2010, 3 : 683 - 686
  • [6] BENCHMARK STUDY OF FINITE ELEMENT MODELS FOR SIMULATING THE THERMOSTAMPING OF WOVEN-FABRIC REINFORCED COMPOSITES
    Sargent, J.
    Chen, J.
    Sherwood, J.
    Cao, J.
    Boisse, P.
    Willem, A.
    Vanclooster, K.
    Lomov, S. V.
    Khan, M.
    Mabrouki, T.
    Fetfatsidis, K.
    Jauffres, D.
    INTERNATIONAL JOURNAL OF MATERIAL FORMING, 2010, 3 : 683 - 686
  • [7] Impact Performance of 3D Orthogonal Woven Composites: A Finite Element Study on Structural Parameters
    Xu, Wang
    Zikry, Mohammed
    Seyam, Abdel-Fattah M.
    JOURNAL OF COMPOSITES SCIENCE, 2024, 8 (06):
  • [8] FAILURE ANALYSIS OF WOVEN HYBRID COMPOSITES USING A FINITE-ELEMENT METHOD
    LI, YL
    RUIZ, C
    HARDING, J
    COMPOSITES SCIENCE AND TECHNOLOGY, 1991, 41 (02) : 129 - 146
  • [9] Multiscale finite element procedure to predict the effective elastic properties of woven composites
    Bouhala, Lyazid
    Ozyigit, Samet
    Laachachi, Abdelghani
    Makradi, Ahmed
    COMPOSITES PART C: OPEN ACCESS, 2024, 15
  • [10] Finite element analysis of mechanical properties of woven composites through a micromechanics model
    Khan, Haris A.
    Hassan, Abid
    Saeed, M. B.
    Mazhar, Farrukh
    Chaudhary, Imran A.
    SCIENCE AND ENGINEERING OF COMPOSITE MATERIALS, 2017, 24 (01) : 87 - 99