Newton polytopes and non-degeneracy

被引:0
|
作者
Wall, CTC [1 ]
机构
[1] Univ Liverpool, Dept Pure Math, Liverpool L69 3BX, Merseyside, England
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:1 / 19
页数:19
相关论文
共 50 条
  • [1] Jacobian ideals and the Newton non-degeneracy condition
    Bivià-Ausina, C
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2005, 48 : 21 - 36
  • [2] On some generalizations of Newton non-degeneracy for hypersurface singularities
    Kerner, Dmitry
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2010, 82 : 49 - 73
  • [3] INVERTIBLE POLYNOMIAL MAPPINGS VIA NEWTON NON-DEGENERACY
    Chen, Ying
    Dias, Luis Renato G.
    Takeuchi, Kiyoshi
    Tibar, Mihai
    ANNALES DE L INSTITUT FOURIER, 2014, 64 (05) : 1807 - 1822
  • [4] Non-Degeneracy of Peak Solutions to the Schrodinger-Newton System
    Guo, Qing
    Xie, Huafei
    ADVANCED NONLINEAR STUDIES, 2021, 21 (02) : 447 - 460
  • [5] Local zeta function for curves, non-degeneracy conditions and Newton polygons
    Saia, MJ
    Zuniga-Galindo, WA
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 357 (01) : 59 - 88
  • [6] Non-degeneracy of the discriminant
    Garcia Barroso, Evelia R.
    Gwozdziewicz, J.
    Lenarcik, A.
    ACTA MATHEMATICA HUNGARICA, 2015, 147 (01) : 220 - 246
  • [7] Non-degeneracy of the discriminant
    E. R. García Barroso
    J. Gwoździewicz
    A. Lenarcik
    Acta Mathematica Hungarica, 2015, 147 : 220 - 246
  • [8] A remark on the non-degeneracy condition
    Korman P.
    Results in Mathematics, 2002, 41 (3-4) : 334 - 336
  • [9] Non-degeneracy of Extremal Points
    Zhou, Min
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2015, 36 (01) : 45 - 50
  • [10] Real analyticity and non-degeneracy
    Dancer, EN
    MATHEMATISCHE ANNALEN, 2003, 325 (02) : 369 - 392