Convergence of locally and globally interacting Markov chains

被引:13
|
作者
Föllmer, H [1 ]
Horst, U [1 ]
机构
[1] Humboldt Univ, Inst Math, Bereich Stochast, D-10099 Berlin, Germany
关键词
Markov chains on infinite product spaces; convergence of Markov chains; contraction techniques; Gibbs measures;
D O I
10.1016/S0304-4149(01)00110-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the long run behaviour of interactive Markov chains on infinite product spaces. In view of microstructure models of financial markets, the interaction has both a local and a global component. The convergence of such Markov chains is analyzed on the microscopic level and on the macroscopic level of empirical fields. We give sufficient conditions for convergence on the macroscopic level. Using a perturbation of the Dobrushin-Vasserstein contraction technique we show that macroscopic convergence implies weak convergence of the underlying Markov chain. This extends the basic convergence theorem of Vasserstein for locally interacting Markov chains to the case where an additional global component appears in the interaction. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:99 / 121
页数:23
相关论文
共 50 条
  • [1] CLUSTER-EXPANSION FOR LOCALLY INTERACTING MARKOV-CHAINS
    IGNATYUK, IA
    MALYSHEV, VA
    [J]. VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1988, (05): : 3 - 7
  • [2] Asymptotics of locally-interacting Markov chains with global signals
    Horst, U
    [J]. ADVANCES IN APPLIED PROBABILITY, 2002, 34 (02) : 416 - 440
  • [3] Algebraic convergence of Markov chains
    Chen, MF
    Wang, YZ
    [J]. ANNALS OF APPLIED PROBABILITY, 2003, 13 (02): : 604 - 627
  • [4] On the convergence of nonlinear Markov chains
    Butkovsky, O. A.
    [J]. DOKLADY MATHEMATICS, 2012, 86 (03) : 824 - 826
  • [5] On the convergence of nonlinear Markov chains
    O. A. Butkovsky
    [J]. Doklady Mathematics, 2012, 86 : 824 - 826
  • [6] Self-interacting Markov chains
    Del Moral, P
    Miclo, L
    [J]. STOCHASTIC ANALYSIS AND APPLICATIONS, 2006, 24 (03) : 615 - 660
  • [7] Vulnerability of networks of interacting Markov chains
    Kocarev, L.
    Zlatanov, N.
    Trajanov, D.
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2010, 368 (1918): : 2205 - 2219
  • [8] ON THE CONVERGENCE OF REVERSIBLE MARKOV-CHAINS
    DESAI, MP
    RAO, VB
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1993, 14 (04) : 950 - 966
  • [9] On Convergence Rates for Homogeneous Markov Chains
    A. Yu. Veretennikov
    M. A. Veretennikova
    [J]. Doklady Mathematics, 2020, 101 : 12 - 15
  • [10] Polynomial convergence rates of Markov chains
    Jarner, SF
    Roberts, GO
    [J]. ANNALS OF APPLIED PROBABILITY, 2002, 12 (01): : 224 - 247