Brain-inspired Hierarchical Attention Recurrent CNN for Image Classification

被引:0
|
作者
Song, Xinjing [1 ]
Wang, Yanjiang [1 ]
Liu, Baodi [1 ]
Liu, Weifeng [1 ]
机构
[1] China Univ Petr East China, Coll Control Sci & Engn, Qingdao, Peoples R China
基金
中国国家自然科学基金;
关键词
hierarchical structure; multi-scale feature fusion; recurrent connection; attention mechanism;
D O I
10.1109/ICSP56322.2022.9965353
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
So far convolutional neural network (CNN) is one of the best-known deep learning models and is pervasively employed in computer vision tasks. CNN models the forward connectivity of the visual cortex, however, there are also a huge amount of recurrent connections and the unique attention mechanism in the biological visual system. Inspired by this fact, we take the most important elements from the structural and functional characteristics of the visual cortex and propose hierarchical attention recurrent CNN (HARCNN) to model the process of the ventral visual pathway. Four blocks are mapped to ventral visual regions V1, V2, V4, and IT. Multi-scale feature fusion is used in the V1 block to increase the receptive field, and the recurrent circuitries in V2, V4, and IT areas are employed to explore the neural dynamics. The attention module is applied to enable the model to concentrate on the important information. HARCNN is evaluated by Top-1 accuracy on three benchmark datasets of image classification, namely, CIFAR-10, CIFAR-100, and MNIST. Experimental findings prove that HARCNN is effective for modeling visual information processing and its performance is comparable to the current deep convolutional networks.
引用
收藏
页码:160 / 165
页数:6
相关论文
共 50 条
  • [1] Hyperspectral Image Classification of Brain-Inspired Spiking Neural Network Based on Attention Mechanism
    Liu, Yang
    Cao, Kejing
    Wang, Ruiyi
    Tian, Meng
    Xie, Yi
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [2] Brain-inspired hierarchical spiking neural network using unsupervised STDP rule for image classification
    Liu, Jiaxing
    Huo, Hong
    Hu, Weitai
    Fang, Tao
    [J]. PROCEEDINGS OF 2018 10TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND COMPUTING (ICMLC 2018), 2018, : 230 - 235
  • [3] A Brain-Inspired Model of Hierarchical Planner
    Subagdja, Budhitama
    Tan, Ah-Hwee
    [J]. 2011 INTERNATIONAL CONFERENCE ON TECHNOLOGIES AND APPLICATIONS OF ARTIFICIAL INTELLIGENCE (TAAI 2011), 2011, : 94 - 100
  • [4] On Brain-inspired Hierarchical Network Topologies
    Beiu, Valeriu
    Madappuram, Basheer A. M.
    Kelly, Peter M.
    McDaid, Liam J.
    [J]. 2009 9TH IEEE CONFERENCE ON NANOTECHNOLOGY (IEEE-NANO), 2009, : 202 - 205
  • [5] Brain-inspired algorithms for retinal image analysis
    Romeny, Bart M. ter Haar
    Bekkers, Erik J.
    Zhang, Jiong
    Abbasi-Sureshjani, Samaneh
    Huang, Fan
    Duits, Remco
    Dashtbozorg, Behdad
    Berendschot, Tos T. J. M.
    Smit-Ockeloen, Iris
    Eppenhof, Koen A. J.
    Feng, Jinghan
    Hannink, Julius
    Schouten, Jan
    Tong, Mengmeng
    Wu, Hanhui
    van Triest, Han W.
    Zhu, Shanshan
    Chen, Dali
    He, Wei
    Xu, Ling
    Han, Ping
    Kang, Yan
    [J]. MACHINE VISION AND APPLICATIONS, 2016, 27 (08) : 1117 - 1135
  • [6] Brain-inspired algorithms for retinal image analysis
    Bart M. ter Haar Romeny
    Erik J. Bekkers
    Jiong Zhang
    Samaneh Abbasi-Sureshjani
    Fan Huang
    Remco Duits
    Behdad Dashtbozorg
    Tos T. J. M. Berendschot
    Iris Smit-Ockeloen
    Koen A. J. Eppenhof
    Jinghan Feng
    Julius Hannink
    Jan Schouten
    Mengmeng Tong
    Hanhui Wu
    Han W. van Triest
    Shanshan Zhu
    Dali Chen
    Wei He
    Ling Xu
    Ping Han
    Yan Kang
    [J]. Machine Vision and Applications, 2016, 27 : 1117 - 1135
  • [7] Recall Network: A Simple Brain-Inspired Algorithm for Classification
    Tian, Zhaoning
    Li, Ying
    Li, Zhenhua
    Li, Site
    [J]. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
  • [8] Hierarchical, Distributed and Brain-Inspired Learning for Internet of Things Systems
    Imani, Mohsen
    Kim, Yeseong
    Khaleghi, Behnam
    Morris, Justin
    Alimohamadi, Haleh
    Imani, Farhad
    Latapie, Hugo
    [J]. 2023 IEEE 43RD INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS, ICDCS, 2023, : 511 - 522
  • [9] The brain-inspired decoder for natural visual image reconstruction
    Li, Wenyi
    Zheng, Shengjie
    Liao, Yufan
    Hong, Rongqi
    He, Chenggang
    Chen, Weiliang
    Deng, Chunshan
    Li, Xiaojian
    [J]. FRONTIERS IN NEUROSCIENCE, 2023, 17
  • [10] Graph attention autoencoder inspired CNN based brain tumor classification using MRI
    Mishra, Lalita
    Verma, Shekhar
    [J]. NEUROCOMPUTING, 2022, 503 : 236 - 247