In situ lorentz TEM magnetization study of a Ni-Mn-Ga ferromagnetic shape memory alloy

被引:32
|
作者
Budruk, A. [1 ]
Phatak, C. [2 ]
Petford-Long, A. K. [2 ]
De Graef, M. [1 ]
机构
[1] Carnegie Mellon Univ, Dept Mat Sci & Engn, Pittsburgh, PA 15213 USA
[2] Argonne Natl Lab, Argonne, IL 60439 USA
基金
美国国家科学基金会;
关键词
Lorentz microscopy; Heusler phases; Martensitic phase transformation; Magnetic domain; Twinning; ANTIPHASE BOUNDARIES; HEUSLER ALLOYS; MARTENSITE; PHASE; NI2MNGA; FIELD;
D O I
10.1016/j.actamat.2011.04.031
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The magnetic domain structure of a Ni(49.9)Mn(28.3)Ga(21.8) ferromagnetic shape memory alloy has been investigated by in situ Lorentz TEM. Field-induced changes in the magnetic domain wall structure were recorded over a field range of [-500, +300] Oe. Inside a martensite twin variant, the observed domain structure was either an alternating (80 wall pattern or a maze-like pattern, depending on the relative orientation of the magnetic easy axis and the in-plane applied field. In twin variants with an in-plane easy axis, significant domain wall movement was observed at moderate applied fields, in agreement with an existing magneto-mechanical model. 180 degrees domain walls were found to be pinned by anti-phase boundaries (APBs). The maze-like domain structure was stable under applied fields below about +/- 100 Oe; at higher fields, the walls became aligned with the applied field. Domain walls also remained strongly pinned at twin boundaries up to applied fields of around 400 Oe. Interestingly, depinning of walls from twin boundaries occurs at field values that are significantly lower than those required to induce motion of the structural twins. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
下载
收藏
页码:4895 / 4906
页数:12
相关论文
共 50 条
  • [1] Study on ferromagnetic shape memory alloy Ni-Mn-Ga films
    Li, Changsheng
    Sun, Jingwen
    Sun, Guangfei
    Yao, Guwen
    Chen, Zixin
    SURFACE & COATINGS TECHNOLOGY, 2007, 201 (9-11): : 5348 - 5353
  • [2] Shape Memory Behavior of Ni-Mn-Ga Ferromagnetic Shape Memory Alloy
    Chokkalingam, R.
    Pandi, R. Senthur
    Peruman, K. Vallal
    Seenithurai, S.
    Kumar, S. Vinodh
    Pandyan, R. Kodi
    Sivakami, A.
    Singh, R. K.
    Raja, M. Manivel
    Chandrasekaran, V.
    Mahendran, M.
    INTERNATIONAL CONFERENCE ON PHYSICS OF EMERGING FUNCTIONAL MATERIALS (PEFM-2010), 2010, 1313 : 199 - +
  • [3] Shape memory effect in ferromagnetic Ni-Mn-Ga alloy
    Mahendran, M
    Puspanathan, K
    SYNTHESIS AND REACTIVITY IN INORGANIC METAL-ORGANIC AND NANO-METAL CHEMISTRY, 2006, 36 (01) : 83 - 88
  • [4] Transformation behavior of Ni-Mn-Ga Ferromagnetic Shape Memory Alloy
    Pushpanathan, K.
    Pandi, R. Senthur
    Chokkalingam, R.
    Mahendran, M.
    FERROMAGNETIC SHAPE MEMORY ALLOYS, 2008, 52 : 121 - 128
  • [5] Magnetization dependence on dynamic strain in ferromagnetic shape memory Ni-Mn-Ga
    Sarawate, N. N.
    Dapino, M. J.
    APPLIED PHYSICS LETTERS, 2008, 93 (06)
  • [6] Magnetoresistance Studies on Ga Excess Ni-Mn-Ga Ferromagnetic Shape Memory Alloy
    Singh, Sanjay
    Rawat, Rajeev
    Barman, S. R.
    SOLID STATE PHYSICS: PROCEEDINGS OF THE 55TH DAE SOLID STATE PHYSICS SYMPOSIUM 2010, PTS A AND B, 2011, 1349 : 1017 - 1018
  • [7] Ni-Mn-Ga ferromagnetic shape memory wires
    Gomez-Polo, C.
    Perez-Landazabal, J. I.
    Recarte, V.
    Sanchez-Alarcos, V.
    Badini-Confalonieri, G.
    Vazquez, M.
    JOURNAL OF APPLIED PHYSICS, 2010, 107 (12)
  • [8] Studies of plastically deformed Ni-Mn-Ga ferromagnetic shape memory alloy
    Drdzen, A.
    Goryczka, T.
    Prusik, K.
    Morawiec, H.
    Lelatko, J.
    APPLIED CRYSTALLOGRAPHY XXI, 2010, 163 : 123 - 126
  • [9] Microstructural characterization of Ni-Mn-Ga ferromagnetic shape memory alloy powders
    Solomon, VC
    Smith, DJ
    Tang, Y
    Berkowitz, AE
    JOURNAL OF APPLIED PHYSICS, 2004, 95 (11) : 6954 - 6956
  • [10] Sensing behavior of ferromagnetic shape memory Ni-Mn-Ga
    Sarawate, Neelesh N.
    Dapino, Marcelo J.
    SMART STRUCTURES AND MATERIALS 2006: ACTIVE MATERIALS: BEHAVIOR AND MECHANICS, 2006, 6170