Generalizations and Properties of the Principal Eigenvalue of Elliptic Operators in Unbounded Domains

被引:60
|
作者
Berestycki, Henri [1 ]
Rossi, Luca [2 ]
机构
[1] CAMS Ecole Hautes Etud Sci Sociales, F-75013 Paris, France
[2] Univ Padua, Dipartimento Matemat, I-35121 Padua, Italy
基金
欧洲研究理事会; 美国国家科学基金会;
关键词
SCHRODINGER-OPERATORS; POSITIVE SOLUTIONS; EQUATIONS; BOUNDARY; BEHAVIOR; FORM;
D O I
10.1002/cpa.21536
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using three different notions of the generalized principal eigenvalue of linear second-order elliptic operators in unbounded domains, we derive necessary and sufficient conditions for the validity of the maximum principle, as well as for the existence of positive eigenfunctions for the Dirichlet problem. Relations between these principal eigenvalues, their simplicity, and several other properties are further discussed. (c) 2015 Wiley Periodicals, Inc.
引用
收藏
页码:1014 / 1065
页数:52
相关论文
共 50 条