On codimension growth of finitely generated associative algebras

被引:162
|
作者
Giambruno, A [1 ]
Zaicev, M
机构
[1] Univ Palermo, Dipartimento Matemat & Applicaz, I-90123 Palermo, Italy
[2] Moscow MV Lomonosov State Univ, Fac Math & Mech, Dept Algebra, Moscow 119899, Russia
关键词
D O I
10.1006/aima.1998.1766
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be a PI-algebra over a field F. We study the asymptotic behavior of the sequence of codimensions c(n)(A) of A. We show that if A is finitely generated over F then Inv (A)=lim(n-->infinity) n root c(n)(A) always exists and is an integer. We also obtain the following characterization of simple algebras: A is finite dimensional central simple over F if and only if Inv(A) = dim A. (C) 1998 Academic Press.
引用
收藏
页码:145 / 155
页数:11
相关论文
共 50 条