Efficient solution of the steady-state Navier-Stokes equations using a multigrid preconditioned Newton-Krylov method

被引:8
|
作者
Syamsudhuha [1 ]
Silvester, DJ [1 ]
机构
[1] Univ Manchester, Dept Math, Manchester M60 1QD, Lancs, England
关键词
Navier-Stokes; multigrid; Krylov; non-linear; Newton;
D O I
10.1002/fld.627
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
An inexact Newton's method is used to solve the steady-state incompressible Navier-Stokes equations. The equations are discretized using a mixed finite element approximation. A new efficient preconditioning methodology introduced by Kay et al. (SIAM J. Sci. Comput., 2002; 24:237-256) is applied and its effectiveness in the context of a Newton linearization is investigated. The original strategy was introduced as a preconditioning methodology for discrete Oseen equations that arise from Picard linearization. Our new variant of the preconditioning strategy is constructed from building blocks consisting of two component multigrid cycles; a multigrid V-cycle for a scalar convection-diffusion operator; and a multigrid V-cycle for a pressure Poisson operator. We present numerical experiments showing that the convergence rate of the preconditioned GMRES is independent of the grid size and relatively insensitive to the Reynolds number. Copyright (C) 2003 John Wiley Sons, Ltd.
引用
收藏
页码:1407 / 1427
页数:21
相关论文
共 50 条
  • [1] A multigrid-preconditioned Newton-Krylov method for the incompressible Navier-Stokes equations
    Pernice, M
    Tocci, MD
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2001, 23 (02): : 398 - 418
  • [2] On Newton-Krylov multigrid methods for the incompressible Navier-Stokes equations
    Knoll, DA
    Mousseau, VA
    JOURNAL OF COMPUTATIONAL PHYSICS, 2000, 163 (01) : 262 - 267
  • [3] Modified preconditioned Newton-Krylov approaches for Navier-Stokes equations using nodal integral method
    Ahmed, Nadeem
    Singh, Suneet
    Bharti, Ram Prakash
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2025, 181 : 163 - 192
  • [4] MULTIGRID PRECONDITIONERS FOR THE NEWTON-KRYLOV METHOD IN THE OPTIMAL CONTROL OF THE STATIONARY NAVIER-STOKES EQUATIONS
    Soane, Ana Maria
    Draganescu, Andrei
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57 (03) : 1494 - 1523
  • [5] A multigrid preconditioned Newton-Krylov method
    Knoll, DA
    Rider, WJ
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1999, 21 (02): : 691 - 710
  • [6] Newton-Krylov algorithm for aerodynamic design using the Navier-Stokes equations
    Nemec, M
    Zingg, DW
    AIAA JOURNAL, 2002, 40 (06) : 1146 - 1154
  • [7] Drag Minimization Based on the Navier-Stokes Equations Using a Newton-Krylov Approach
    Osusky, Lana
    Buckley, Howard
    Reist, Thomas
    Zingg, David W.
    AIAA JOURNAL, 2015, 53 (06) : 1555 - 1577
  • [8] A parallel Newton-Krylov method for Navier-Stokes rotorcraft codes
    Ekici, K
    Lyrintzis, AS
    INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS, 2003, 17 (03) : 225 - 230
  • [9] Implicit solution of preconditioned Navier-Stokes equations using algebraic multigrid
    Weiss, JM
    Maruszewski, JP
    Smith, WA
    AIAA JOURNAL, 1999, 37 (01) : 29 - 36
  • [10] A FULLY IMPLICIT DIRECT NEWTON METHOD FOR THE STEADY-STATE NAVIER-STOKES EQUATIONS
    KNOLL, DA
    MCHUGH, PR
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1993, 17 (06) : 449 - 461