EXTENDING THE KNOPS-STUART-TAHERI TECHNIQUE TO C1 WEAK LOCAL MINIMIZERS IN NONLINEAR ELASTICITY

被引:4
|
作者
Bevan, J. J. [1 ]
机构
[1] Univ Surrey, Dept Math, Guildford GU2 7XH, Surrey, England
关键词
Stored-energy function; local minimizer; uniqueness; MULTIDIMENSIONAL CALCULUS; EQUILIBRIUM SOLUTIONS; UNIQUENESS; QUASICONVEXITY;
D O I
10.1090/S0002-9939-2010-10637-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that any C-1 weak local minimizer of a certain class of elastic stored-energy functionals I(u) = integral(Omega) = f (del u) dx subject to a linear boundary displacement u(0)(x) = xi(x) on a star-shaped domain Omega with C-1 boundary is necessarily affine provided f is strictly quasiconvex at xi. This is done without assuming that the local minimizer satisfies the Euler-Lagrange equations, and therefore extends in a certain sense the results of Knops and Stuart, and those of Taheri, to a class of functionals whose integrands take the value +infinity in an essential way.
引用
收藏
页码:1667 / 1679
页数:13
相关论文
共 17 条