The strain effect on the electronic properties of the MoSSe/WSSe van der Waals heterostructure: a first-principles study

被引:61
|
作者
Guo, Wenyu [1 ]
Ge, Xun [1 ]
Sun, Shoutian [1 ]
Xie, Yiqun [1 ]
Ye, Xiang [1 ]
机构
[1] Shanghai Normal Univ, Dept Phys, Shanghai 200234, Peoples R China
基金
上海市自然科学基金;
关键词
OPTICAL-PROPERTIES; CHARGE-TRANSFER; PHASE; BAND; MONOLAYERS; DEFECT;
D O I
10.1039/d0cp00403k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The structural, mechanical and electronic properties of the MoSSe/WSSe van der Waals (vdW) heterostructure under various degrees of horizontal and vertical strain are systematically investigated based on first-principles methods. It is found that the MoSSe/WSSe vdW heterostructure of the most stable AB stacking is a direct band gap semiconductor and exhibits a type-II band alignment, which demonstrates an effective separation of photogenerated electron-hole pairs and increases their lifetime accordingly. The high angle-dependent Young's modulus and normal Poisson's ratios show the mechanical stability and anisotropy. It is found that the band gap of the heterostructure can be modulated effectively by applying strain, exhibiting a decreasing trend with increasing strain, and even lead to an intriguing semiconductor-metal transition under a certain large tensile strain. In particular, a negative correlation between the band gap and structure pressure provides a theoretical basis for experimentally regulating the electronic properties. Moreover, different strains can induce two different conditions of direct-indirect transition or can maintain the characteristics of the direct-band-gap. All these interesting results provide a detailed understanding of the MoSSe/WSSe vdW heterostructure under strain and indicate that it is a good candidate for low-dimensional electronic, nano-electronic and optoelectronic devices.
引用
下载
收藏
页码:4946 / 4956
页数:11
相关论文
共 50 条
  • [1] Insb/Janus Mosse Van Der Waals Heterostructure: First-Principles Calculation Study of Electronic Structure and Optical Properties
    Qin, Xuebing
    Wang, Xuewen
    Zhao, Yingying
    Ye, Shengyun
    Hilal, Muhammad
    Zhang, Weibin
    Guo, Jie
    SSRN,
  • [2] Geometric, electronic, and optical properties of MoS2/WSSe van der Waals heterojunctions: a first-principles study
    Zhang, Yan-Fang
    Pan, Jinbo
    Du, Shixuan
    NANOTECHNOLOGY, 2021, 32 (35)
  • [3] First-principles calculations of the electronic, and optical properties of a GaAs/AlAs van der Waals heterostructure
    Yao, Fang
    Yang, Minjie
    Chen, Yongtai
    Zhou, Xiaolong
    Wang, Lihui
    CHEMICAL PHYSICS LETTERS, 2021, 765
  • [4] First-Principles Study of Electronic and Optical Properties of Two-Dimensional WSSe/BSe van der Waals Heterostructure with High Solar-to-Hydrogen Efficiency
    Zhu, Zhengyang
    Ren, Kai
    Shu, Huabing
    Cui, Zhen
    Huang, Zhaoming
    Yu, Jin
    Xu, Yujing
    CATALYSTS, 2021, 11 (08)
  • [5] Adjustable electronic and optical properties of BlueP/MoS2van der Waals heterostructure by external strain: a first-principles study
    Yang, Fei
    Han, Junnan
    Zhang, Le
    Tang, Xianhong
    Zhuo, Zhenguo
    Tao, Yue
    Cao, Xincheng
    Dai, Yuehua
    NANOTECHNOLOGY, 2020, 31 (37)
  • [6] Electronic and magnetic properties of the Janus MoSSe/WSSe superlattice nanoribbon: a first-principles study
    Yu, Lingling
    Sun, Shoutian
    Ye, Xiang
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2020, 22 (04) : 2498 - 2508
  • [7] First-principles calculations of the structural, electronic, and optical properties of a ZnS/GaP van der Waals heterostructure
    Aihu Xiong
    Xiaolong Zhou
    Journal of Computational Electronics, 2019, 18 : 758 - 769
  • [8] First-principles calculations of the structural, electronic, and optical properties of a ZnS/GaP van der Waals heterostructure
    Xiong, Aihu
    Zhou, Xiaolong
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2019, 18 (03) : 758 - 769
  • [9] Strain effects on the electronic and optical properties of Van der Waals heterostructure MoS2/WS2: A first-principles study
    Farkous, M.
    Bikerouin, M.
    Thuan, Doan, V
    Benhouria, Y.
    El-Yadri, M.
    Feddi, E.
    Erguig, H.
    Dujardin, F.
    Nguyen, Chuong, V
    Hieu, Nguyen, V
    Bui, H. D.
    Hieu, Nguyen N.
    Phuc, Huynh, V
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2020, 116
  • [10] Electronic and Optical Properties of the Type-II GaN/SiH van der Waals Heterostructure: A First-Principles Study
    Lv, Lin
    Ma, Xin
    Lou, Wenbo
    Zhang, Xiaomei
    Shen, Chenhai
    Xia, Congxin
    Liu, Yufang
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2022, 259 (07):