Reciprocal Graphical Models for Integrative Gene Regulatory Network Analysis

被引:6
|
作者
Ni, Yang [1 ]
Ji, Yuan [2 ]
Mueller, Peter [3 ]
机构
[1] Univ Texas Austin, Dept Stat & Data Sci, Austin, TX 78712 USA
[2] Univ Chicago, Program Computat Genom & Med, NorthShore Univ HealthSyst, Dept Publ Hlth Sci, Chicago, IL 60637 USA
[3] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
来源
BAYESIAN ANALYSIS | 2018年 / 13卷 / 04期
关键词
simultaneous equation models; Markov equivalence; directed cycles; feedback loop; multimodal genomic data; SIGNALING PATHWAYS; INVERTIBILITY; EXPRESSION; SELECTION; KINASE; ERK;
D O I
10.1214/17-BA1087
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Constructing gene regulatory networks is a fundamental task in systems biology. We introduce a Gaussian reciprocal graphical model for inference about gene regulatory relationships by integrating messenger ribonucleic acid (mRNA) gene expression and deoxyribonucleic acid (DNA) level information including copy number and methylation. Data integration allows for inference on the directionality of certain regulatory relationships, which would be otherwise indistinguishable due to Markov equivalence. Efficient inference is developed based on simultaneous equation models. Bayesian model selection techniques are adopted to estimate the graph structure. We illustrate our approach by simulations and application in colon adenocarcinoma pathway analysis.
引用
收藏
页码:1091 / 1106
页数:16
相关论文
共 50 条
  • [1] Identifying gene regulatory network rewiring using latent differential graphical models
    Tian, Dechao
    Gu, Quanquan
    Ma, Jian
    NUCLEIC ACIDS RESEARCH, 2016, 44 (17)
  • [2] TEMPORAL GRAPHICAL MODELS FOR CROSS-SPECIES GENE REGULATORY NETWORK DISCOVERY
    Liu, Yan
    Niculescu-Mizil, Alexandru
    Lozano, Aurelie
    Lu, Yong
    JOURNAL OF BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, 2011, 9 (02) : 231 - 250
  • [3] Heterogeneous reciprocal graphical models
    Ni, Yang
    Muller, Peter
    Zhu, Yitan
    Ji, Yuan
    BIOMETRICS, 2018, 74 (02) : 606 - 615
  • [5] Integrative network component analysis for regulatory network reconstruction
    Wang, Chen
    Xuan, Jianhua
    Chen, Li
    Zhao, Po
    Wang, Yue
    Clarke, Robert
    Hoffman, Eric P.
    BIOINFORMATICS RESEARCH AND APPLICATIONS, 2008, 4983 : 196 - +
  • [6] Integrative random forest for gene regulatory network inference
    Petralia, Francesca
    Wang, Pei
    Yang, Jialiang
    Tu, Zhidong
    BIOINFORMATICS, 2015, 31 (12) : 197 - 205
  • [7] A Tutorial on Analysis and Simulation of Boolean Gene Regulatory Network Models
    Xiao, Yufei
    CURRENT GENOMICS, 2009, 10 (07) : 511 - 525
  • [8] Identification of Sparse Reciprocal Graphical Models
    Alpago, Daniele
    Zorzi, Mattia
    Ferrante, Augusto
    IEEE CONTROL SYSTEMS LETTERS, 2018, 2 (04): : 659 - 664
  • [9] Integrative gene regulatory network analysis discloses key driver genes of fibromuscular dysplasia
    d'Escamard, Valentina
    Kadian-Dodov, Daniella
    Ma, Lijiang
    Lu, Sizhao
    King, Annette
    Xu, Yang
    Peng, Shouneng
    V'Gangula, Bhargravi
    Zhou, Yu
    Thomas, Allison
    Michelis, Katherine C.
    Bander, Emir
    Bouchareb, Rihab
    Georges, Adrien
    Nomura-Kitabayashi, Aya
    Wiener, Robert J.
    Costa, Kevin D.
    Chepurko, Elena
    Chepurko, Vadim
    Fava, Marika
    Barwari, Temo
    Anyanwu, Anelechi
    Filsoufi, Farzan
    Florman, Sander
    Bouatia-Naji, Nabila
    Schmidt, Lukas E.
    Mayr, Manuel
    Katz, Michael G.
    Hao, Ke
    Weiser-Evans, Mary C. M.
    Bjorkegren, Johan L. M.
    Olin, Jeffrey W.
    Kovacic, Jason C.
    NATURE CARDIOVASCULAR RESEARCH, 2024, 3 (09): : 1098 - 1122
  • [10] Analysis of gene regulatory network models with graded and binary transcriptional responses
    Veflingstad, Siren R.
    Plahte, Erik
    BIOSYSTEMS, 2007, 90 (02) : 323 - 339