ENHANCING THE EFFICIENCY OF A LARGE-SCALE SCOPING REVIEW WITH CROWDSOURCING AND MACHINE-LEARNING METHODOLOGY

被引:0
|
作者
Zorko, D. J. [1 ,2 ]
Mcnally, J. [3 ,4 ]
Rochwerg, B. [5 ,6 ]
Pinto, N. [7 ]
Couban, R. [8 ]
Hearn, K. O' [4 ]
Choong, K. [2 ,5 ,6 ]
机构
[1] Hosp Sick Children, Dept Pediat Crit Care Med, Toronto, ON, Canada
[2] McMaster Univ, Dept Pediat, Hamilton, ON, Canada
[3] Childrens Hosp Eastern Ontario, Dept Pediat, Ottawa, ON, Canada
[4] Childrens Hosp, Eastern Ontario Res Inst, Ottawa, ON, Canada
[5] McMaster Univ, Dept Crit Care, Hamilton, ON, Canada
[6] McMaster Univ, Dept Hlth Res Methods Evidence & Impact, Hamilton, ON, Canada
[7] Childrens Hosp Philadelphia, Dept Anesthesiol & Crit Care Med, Philadelphia, PA USA
[8] McMaster Univ, Dept Anesthesia, Hamilton, ON, Canada
关键词
chronic critical illness; critical care; intensive care units; pediatrics; research design;
D O I
暂无
中图分类号
R4 [临床医学];
学科分类号
1002 ; 100602 ;
摘要
OP023
引用
下载
收藏
页数:1
相关论文
共 50 条
  • [1] A Machine-Learning Approach for Communication Prediction of Large-Scale Applications
    Papadopoulou, Nikela
    Goumas, Georgios
    Koziris, Nectarios
    2015 IEEE INTERNATIONAL CONFERENCE ON CLUSTER COMPUTING - CLUSTER 2015, 2015, : 120 - 123
  • [2] Chimera: Large-Scale Classification using Machine Learning, Rules, and Crowdsourcing
    Sun, Chong
    Rampalli, Narasimhan
    Yang, Frank
    Doan, Anhai
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2014, 7 (13): : 1529 - 1540
  • [3] A review of Nystrom methods for large-scale machine learning
    Sun, Shiliang
    Zhao, Jing
    Zhu, Jiang
    INFORMATION FUSION, 2015, 26 : 36 - 48
  • [4] Automatic Detection of Large-scale Flux Ropes and Their Geoeffectiveness with a Machine-learning Approach
    Pal, Sanchita
    dos Santos, Luiz F. G.
    Weiss, Andreas J.
    Narock, Thomas
    Narock, Ayris
    Nieves-Chinchilla, Teresa
    Jian, Lan K.
    Good, Simon W.
    ASTROPHYSICAL JOURNAL, 2024, 972 (01):
  • [5] Towards provably efficient quantum algorithms for large-scale machine-learning models
    Junyu Liu
    Minzhao Liu
    Jin-Peng Liu
    Ziyu Ye
    Yunfei Wang
    Yuri Alexeev
    Jens Eisert
    Liang Jiang
    Nature Communications, 15
  • [6] Towards provably efficient quantum algorithms for large-scale machine-learning models
    Liu, Junyu
    Liu, Minzhao
    Liu, Jin-Peng
    Ye, Ziyu
    Wang, Yunfei
    Alexeev, Yuri
    Eisert, Jens
    Jiang, Liang
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [7] Advancing the large-scale CCS database for metabolomics and lipidomics at the machine-learning era
    Zhou, Zhiwei
    Tu, Jia
    Zhu, Zheng-Jiang
    CURRENT OPINION IN CHEMICAL BIOLOGY, 2018, 42 : 34 - 41
  • [8] Open Challenges in Developing Generalizable Large-Scale Machine-Learning Models for Catalyst Discovery
    Kolluru, Adeesh
    Shuaibi, Muhammed
    Palizhati, Aini
    Shoghi, Nima
    Das, Abhishek
    Wood, Brandon
    Zitnick, C. Lawrence
    Kitchin, John R.
    Ulissi, Zachary W.
    ACS CATALYSIS, 2022, 12 (14): : 8572 - 8581
  • [9] Reproducing Reaction Mechanisms with Machine-Learning Models Trained on a Large-Scale Mechanistic Dataset
    Joung, Joonyoung F.
    Fong, Mun Hong
    Roh, Jihye
    Tu, Zhengkai
    Bradshaw, John
    Coley, Connor W.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024,
  • [10] Automated Monitoring, Analytics, and Machine-Learning for Improved Large-Scale AAV Vector Production
    Miller, Mark
    Williams, Brian
    Smelter, Andrey
    Baltzell, Asher
    Marks, Kristin
    Israel, Jennifer
    MOLECULAR THERAPY, 2023, 31 (04) : 618 - 618