ENHANCING THE EFFICIENCY OF A LARGE-SCALE SCOPING REVIEW WITH CROWDSOURCING AND MACHINE-LEARNING METHODOLOGY

被引:0
|
作者
Zorko, D. J. [1 ,2 ]
Mcnally, J. [3 ,4 ]
Rochwerg, B. [5 ,6 ]
Pinto, N. [7 ]
Couban, R. [8 ]
Hearn, K. O' [4 ]
Choong, K. [2 ,5 ,6 ]
机构
[1] Hosp Sick Children, Dept Pediat Crit Care Med, Toronto, ON, Canada
[2] McMaster Univ, Dept Pediat, Hamilton, ON, Canada
[3] Childrens Hosp Eastern Ontario, Dept Pediat, Ottawa, ON, Canada
[4] Childrens Hosp, Eastern Ontario Res Inst, Ottawa, ON, Canada
[5] McMaster Univ, Dept Crit Care, Hamilton, ON, Canada
[6] McMaster Univ, Dept Hlth Res Methods Evidence & Impact, Hamilton, ON, Canada
[7] Childrens Hosp Philadelphia, Dept Anesthesiol & Crit Care Med, Philadelphia, PA USA
[8] McMaster Univ, Dept Anesthesia, Hamilton, ON, Canada
关键词
chronic critical illness; critical care; intensive care units; pediatrics; research design;
D O I
暂无
中图分类号
R4 [临床医学];
学科分类号
1002 ; 100602 ;
摘要
OP023
引用
收藏
页数:1
相关论文
共 50 条
  • [1] A Machine-Learning Approach for Communication Prediction of Large-Scale Applications
    Papadopoulou, Nikela
    Goumas, Georgios
    Koziris, Nectarios
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON CLUSTER COMPUTING - CLUSTER 2015, 2015, : 120 - 123
  • [2] Chimera: Large-Scale Classification using Machine Learning, Rules, and Crowdsourcing
    Sun, Chong
    Rampalli, Narasimhan
    Yang, Frank
    Doan, Anhai
    [J]. PROCEEDINGS OF THE VLDB ENDOWMENT, 2014, 7 (13): : 1529 - 1540
  • [3] A review of Nystrom methods for large-scale machine learning
    Sun, Shiliang
    Zhao, Jing
    Zhu, Jiang
    [J]. INFORMATION FUSION, 2015, 26 : 36 - 48
  • [4] Automatic Detection of Large-scale Flux Ropes and Their Geoeffectiveness with a Machine-learning Approach
    Pal, Sanchita
    dos Santos, Luiz F. G.
    Weiss, Andreas J.
    Narock, Thomas
    Narock, Ayris
    Nieves-Chinchilla, Teresa
    Jian, Lan K.
    Good, Simon W.
    [J]. ASTROPHYSICAL JOURNAL, 2024, 972 (01):
  • [5] Towards provably efficient quantum algorithms for large-scale machine-learning models
    Liu, Junyu
    Liu, Minzhao
    Liu, Jin-Peng
    Ye, Ziyu
    Wang, Yunfei
    Alexeev, Yuri
    Eisert, Jens
    Jiang, Liang
    [J]. NATURE COMMUNICATIONS, 2024, 15 (01)
  • [6] Towards provably efficient quantum algorithms for large-scale machine-learning models
    Junyu Liu
    Minzhao Liu
    Jin-Peng Liu
    Ziyu Ye
    Yunfei Wang
    Yuri Alexeev
    Jens Eisert
    Liang Jiang
    [J]. Nature Communications, 15
  • [7] Advancing the large-scale CCS database for metabolomics and lipidomics at the machine-learning era
    Zhou, Zhiwei
    Tu, Jia
    Zhu, Zheng-Jiang
    [J]. CURRENT OPINION IN CHEMICAL BIOLOGY, 2018, 42 : 34 - 41
  • [8] Open Challenges in Developing Generalizable Large-Scale Machine-Learning Models for Catalyst Discovery
    Kolluru, Adeesh
    Shuaibi, Muhammed
    Palizhati, Aini
    Shoghi, Nima
    Das, Abhishek
    Wood, Brandon
    Zitnick, C. Lawrence
    Kitchin, John R.
    Ulissi, Zachary W.
    [J]. ACS CATALYSIS, 2022, 12 (14): : 8572 - 8581
  • [9] Reproducing Reaction Mechanisms with Machine-Learning Models Trained on a Large-Scale Mechanistic Dataset
    Joung, Joonyoung F.
    Fong, Mun Hong
    Roh, Jihye
    Tu, Zhengkai
    Bradshaw, John
    Coley, Connor W.
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024,
  • [10] Automated Monitoring, Analytics, and Machine-Learning for Improved Large-Scale AAV Vector Production
    Miller, Mark
    Williams, Brian
    Smelter, Andrey
    Baltzell, Asher
    Marks, Kristin
    Israel, Jennifer
    [J]. MOLECULAR THERAPY, 2023, 31 (04) : 618 - 618