Doxorubicin-Induced Cardiotoxicity May Be Alleviated by Bone Marrow Mesenchymal Stem Cell-Derived Exosomal lncRNA via Inhibiting Inflammation

被引:7
|
作者
Tian, Chao [1 ]
Yang, Yanyan [2 ]
Li, Bing [3 ]
Liu, Meixin [4 ]
He, Xiangqin [4 ]
Zhao, Liang [4 ]
Song, Xiaoxia [4 ]
Yu, Tao [4 ,5 ]
Chu, Xian-Ming [1 ,6 ]
机构
[1] Affiliated Hosp Qingdao Univ, Dept Cardiol, Qingdao, Peoples R China
[2] Qingdao Univ, Basic Med Sch, Dept Immunol, Qingdao, Peoples R China
[3] Qingdao Univ, Basic Med Sch, Dept Genet, Qingdao, Peoples R China
[4] Affiliated Hosp Qingdao Univ, Dept Cardiac Ultrasound, Qingdao, Peoples R China
[5] Affiliated Hosp Qingdao Univ, Inst Translat Med, Qingdao, Peoples R China
[6] Qingdao Univ, Dept Cardiol, Affiliated Cardiovasc Hosp, Qingdao, Peoples R China
基金
中国国家自然科学基金;
关键词
doxorubicin-induced cardiotoxicity; exosomes; inflammation; transcriptome sequencing analysis; PROLIFERATION; FERROPTOSIS; SENESCENCE; MECHANISM; BIOLOGY; CANCER;
D O I
10.2147/JIR.S358471
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Purpose: To explore the therapeutic mechanism of bone marrow mesenchymal stem cells derived exosomes (BMSC-Exos) for doxorubicin (DOX)-induced cardiotoxicity (DIC) and identify the long noncoding RNAs' (lncRNAs') anti-inflammation function derived by BMSC-Exos.Materials and Methods: High-throughput sequencing and transcriptome bioinformatics analysis of lncRNA were performed between DOX group and BEC (bone marrow mesenchymal stem cells derived exosomes coculture) group. Elevated lncRNA (ElncRNA) in the cardiomyocytes of BEC group compared with DOX group were confirmed. Based on the location and coexpression relationship between ElncRNA and its target genes, we predicted two target genes of ElncRNA, named cis_targets and trans_targets. The target genes were analyzed by enrichment analyses. Then, we identified the key cellular biological pathways regulating DIC. Experiments were performed to verify the therapeutic effects of exosomes and the origin of lncRNAs in vitro and in vivo.Results: Three hundred and one lncRNAs were differentially expressed between DOX and BEC groups (fold change >1.5 and p < 0.05), of which 169 lncRNAs were elevated in the BEC group compared with the DOX group. GO enrichment analysis of target genes of ElncRNAs showed that they were predominantly involved in inflammation-associated processes. KEGG analysis indicated that their regulatory pathways were mainly involved in oxidative stress-induced inflammation and proliferation of cardiomyocyte. The verification experiments in vitro showed that the oxidative stress and cell deaths were decreased in BEC groups. Moreover, from the top 10 ElncRNAs identified in the sequencing results, MSTRG.98097.4 and MSTRG.58791.2 were both decreased in the DOX group and elevated in BEC group. While in verification experiments in vivo, only the expression of MSTRG.58791.2 is consistent with the result in vitro.Conclusion: Our results show that ElncRNA, MSTRG.58791.2, is possibly secreted by the BMSC-Exos and able to alleviate DIC by suppressing inflammatory response and inflammation-related cell death.
引用
收藏
页码:4467 / 4486
页数:20
相关论文
共 50 条
  • [1] Mesenchymal Stem Cell-Derived Exosomes Ameliorate Doxorubicin-Induced Cardiotoxicity
    Ali, Sawdah A.
    Singla, Dinender K.
    PHARMACEUTICALS, 2024, 17 (01)
  • [2] Evaluation of doxorubicin-induced cardiotoxicity in human induced pluripotent stem cell-derived cardiomyocytes
    Hunault, Marion
    Legrand, Christophe
    Castagne, Vincent
    Goineau, Sonia
    TOXICOLOGY LETTERS, 2017, 280 : S255 - S255
  • [3] Multimodality imaging in the assessment of bone marrow-derived mesenchymal stem cell therapy for doxorubicin-induced cardiomyopathy
    Qu, Chanjuan
    Wang, Jian
    Wang, Yuqing
    He, Fangfei
    Shi, Xudong
    Zhang, Zhuoli
    Wang, Yining
    AMERICAN JOURNAL OF CANCER RESEARCH, 2022, 12 (02): : 574 - 584
  • [4] Bone Marrow Mesenchymal Stem Cell-Derived Exosomes Alleviate Diabetic Kidney Disease in Rats by Inhibiting Apoptosis and Inflammation
    Liu, Libo
    Zhou, Yuquan
    Zhao, Xin
    Yang, Xueyao
    Wan, Xueqi
    An, Ziyu
    Zhang, Huan
    Tian, Jinfan
    Ge, Changjiang
    Song, Xiantao
    FRONTIERS IN BIOSCIENCE-LANDMARK, 2023, 28 (09):
  • [5] LncRNA GHET1 from bone mesenchymal stem cell-derived exosomes improves doxorubicin-induced pyroptosis of cardiomyocytes by mediating NLRP3
    Zhai, Xiaoya
    Zhou, Jiedong
    Huang, Xingxiao
    Weng, Jingfan
    Lin, Hui
    Sun, Shimin
    Chi, Jufang
    Meng, Liping
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [6] Effects of bone marrow-derived mesenchymal stem cells on doxorubicin-induced liver injury in rats
    Samanci, Tugba Celik
    Gokcimen, Alpaslan
    Eren, Mehtap Kilic
    Gurses, Kadri Murat
    Pilevneli, Hatice
    Kuyucu, Yurdun
    JOURNAL OF BIOCHEMICAL AND MOLECULAR TOXICOLOGY, 2022, 36 (04)
  • [7] THERAPY WITH ADULT BONE MARROW-DERIVED MESENCHYMAL STEM CELLS AMELIORATES DOXORUBICIN-INDUCED CARDIOMYOPATHY
    Sanganalmath, Santosh K.
    Chugh, Atul R.
    Benakanakere, Manjunatha R.
    Vincent, Robert J.
    Hunt, Greg
    Bolli, Roberto
    Dawn, Buddhadeb
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2010, 55 (10)
  • [8] Bone Marrow Mesenchymal Stem Cell-Derived Exosomes Improve Osteoporosis by Inhibiting Osteoblasts Apoptosis
    Liu, Wei
    Zhang, Bin
    Xiao, Yan
    Liu, Qiang
    Yan, Zhiqiang
    Li, Bei
    Huang, Ruiliang
    Ou, Guangpeng
    Deng, Songyun
    Xu, Shaoyong
    JOURNAL OF BIOMATERIALS AND TISSUE ENGINEERING, 2019, 9 (07) : 1003 - 1007
  • [9] Variation in RARG increases susceptibility to doxorubicin-induced cardiotoxicity in patient specific induced pluripotent stem cell-derived cardiomyocytes
    Effimia Christidi
    Haojun Huang
    Sanam Shafaattalab
    Agnes Maillet
    Eric Lin
    Kate Huang
    Zachary Laksman
    Margot K. Davis
    Glen F. Tibbits
    Liam R. Brunham
    Scientific Reports, 10
  • [10] Human induced pluripotent stem cell-derived cardiomyocytes recapitulate the predilection of breast cancer patients to doxorubicin-induced cardiotoxicity
    Burridge, Paul W.
    Li, Yong Fuga
    Matsa, Elena
    Wu, Haodi
    Ong, Sang-Ging
    Sharma, Arun
    Holmstrom, Alexandra
    Chang, Alex C.
    Coronado, Michael J.
    Ebert, Antje D.
    Knowles, Joshua W.
    Telli, Melinda L.
    Witteles, Ronald M.
    Blau, Helen M.
    Bernstein, Daniel
    Altman, Russ B.
    Wu, Joseph C.
    NATURE MEDICINE, 2016, 22 (05) : 547 - 556