Diffusion-approximation in stochastically forced kinetic equations

被引:3
|
作者
Debussche, Arnaud [1 ]
Vovelle, Julien [2 ]
机构
[1] Univ Rennes, CNRS, UMR 6625, IRMAR, F-35000 Rennes, France
[2] Univ Lyon, CNRS, UMR 5669, ENS Lyon,UMPA, F-69364 Lyon, France
关键词
EXISTENCE;
D O I
10.2140/tunis.2021.3.1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We derive the hydrodynamic limit of a kinetic equation where the interactions in velocity are modeled by a linear operator (Fokker-Planck or linear Boltzmann) and the force in the Vlasov term is a stochastic process with high amplitude and short-range correlation. In the scales and the regime we consider, the hydrodynamic equation is a scalar second-order stochastic partial differential equation. Compared to the deterministic case, we also observe a phenomenon of enhanced diffusion.
引用
收藏
页码:1 / +
页数:56
相关论文
共 50 条