The dual space of L∞ is L1

被引:3
|
作者
Väth, M [1 ]
机构
[1] Univ Wurzburg, Dept Math, D-97074 Wurzburg, Germany
来源
关键词
D O I
10.1016/S0019-3577(98)80039-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The provocative title may be supposed to hold if the axiom of choice is weakened. Even more: The dual space of any Kothe space (real-valued and over a sigma-finite measure space) coincides with its associate space in the canonical way; in particular, any Kothe space with Fatou's property is reflexive. We will show that all this is true in ZF+DC + PMomega, where PMomega is introduced in the text and herds e.g. in Solovay's model.
引用
收藏
页码:619 / 625
页数:7
相关论文
共 50 条
  • [1] The universality of l1 as a dual space
    Freeman, D.
    Odell, E.
    Schlumprecht, Th.
    MATHEMATISCHE ANNALEN, 2011, 351 (01) : 149 - 186
  • [2] On the Riesz dual of L1 (μ)
    van Rooij, A.
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2020, 31 (05): : 917 - 919
  • [3] A Dual Frequency GPS Receiver (L1/L2c or L1/Lp) for Space Applications in LEO and GEO Orbit
    Serre, Stephane
    Mehlen, Christian
    Boyer, Claude
    Holsters, Peter
    Seco-Granados, Gonzalo
    Garcia-Rodriguez, Alberto
    Issler, Jean-Luc
    Grondin, Michel
    PROCEEDINGS OF THE 19TH INTERNATIONAL TECHNICAL MEETING OF THE SATELLITE DIVISION OF THE INSTITUTE OF NAVIGATION (ION GNSS 2006), 2006, : 2563 - 2570
  • [4] l∞(l1) and l1(l∞) are not isomorphic
    Cembranos, Pilar
    Mendoza, Jose
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 341 (01) : 295 - 297
  • [5] DIMENSION OF LINEAR SPACE L (L1 L2)
    RAKESTRA.RM
    YATES, JH
    AMERICAN MATHEMATICAL MONTHLY, 1967, 74 (09): : 1180 - &
  • [6] Local geometry of L1 ∩ L∞ and L1 + L∞
    Hudzik H.
    Kamińska A.
    Mastyło M.
    Archiv der Mathematik, 1997, 68 (2) : 159 - 168
  • [7] BEST APPROXIMANTS IN L1 SPACE
    SHINTANI, T
    ANDO, T
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1975, 33 (01): : 33 - 39
  • [8] IsometricandAlmostIsometricOperatorsofB(L1→L1)
    定光桂
    ActaMathematicaSinica, 1985, (02) : 126 - 140
  • [9] L1 SUBSPACES OF L1
    ZIPPIN, M
    ISRAEL JOURNAL OF MATHEMATICS, 1975, 22 (02) : 110 - 117
  • [10] The James constant for the l3 − l1 space
    Chang Sen Yang
    Hai Ying Li
    Acta Mathematica Sinica, English Series, 2016, 32 : 1075 - 1079