Stationary state degeneracy of open quantum systems with non-abelian symmetries

被引:26
|
作者
Zhang, Zh [1 ,2 ]
Tindall, J. [1 ]
Mur-Petit, J. [1 ]
Jaksch, D. [1 ]
Buca, B. [1 ]
机构
[1] Univ Oxford, Clarendon Lab, Parks Rd, Oxford OX1 3PU, England
[2] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China
基金
欧洲研究理事会; 英国工程与自然科学研究理事会;
关键词
Lindblad master equation; symmetry; degeneracy; non-ergodicity; open quantum systems; quantum Liouvillians; quantum networks; !text type='PYTHON']PYTHON[!/text] FRAMEWORK; DYNAMICS; QUTIP;
D O I
10.1088/1751-8121/ab88e3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the null space degeneracy of open quantum systems with multiple non-abelian, strong symmetries. By decomposing the Hilbert space representation of these symmetries into an irreducible representation involving the direct sum of multiple, commuting, invariant subspaces we derive a tight lower bound for the stationary state degeneracy. We apply these results within the context of open quantum many-body systems, presenting three illustrative examples: a fully-connected quantum network, the XXX Heisenberg model and the Hubbard model. We find that the derived bound, which scales at least cubically in the system size the SU(2) symmetric cases, is often saturated. Moreover, our work provides a theory for the systematic block-decomposition of a Liouvillian with non-abelian symmetries, reducing the computational difficulty involved in diagonalising these objects and exposing a natural, physical structure to the steady states-which we observe in our examples.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Abelian and non-Abelian geometric phases in adiabatic open quantum systems
    Sarandy, M. S.
    Lidar, D. A.
    PHYSICAL REVIEW A, 2006, 73 (06):
  • [2] Degeneracy and non-Abelian statistics
    Rowell, Eric C.
    Wang, Zhenghan
    PHYSICAL REVIEW A, 2016, 93 (03)
  • [3] Degeneracy between Abelian and non-Abelian strings
    Monin, Sergey
    Shifman, M.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2014, 29 (18):
  • [4] Spontaneously broken non-Abelian gauge symmetries in nonrelativistic systems
    Watanabe, Haruki
    Murayama, Hitoshi
    PHYSICAL REVIEW D, 2014, 90 (12)
  • [5] Non-Abelian discrete R symmetries
    Chen, Mu-Chun
    Ratz, Michael
    Trautner, Andreas
    JOURNAL OF HIGH ENERGY PHYSICS, 2013, (09):
  • [6] TORUS MANIFOLDS WITH NON-ABELIAN SYMMETRIES
    Wiemeler, Michael
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (03) : 1427 - 1487
  • [7] Non-Abelian discrete R symmetries
    Mu-Chun Chen
    Michael Ratz
    Andreas Trautner
    Journal of High Energy Physics, 2013
  • [8] Non-Abelian nonsymmorphic chiral symmetries
    Yang, Yi
    Po, Hoi Chun
    Liu, Vincent
    Joannopoulos, John D.
    Fu, Liang
    Soljacic, Marin
    PHYSICAL REVIEW B, 2022, 106 (16)
  • [9] Anomaly of non-Abelian discrete symmetries
    Kobayashi, Tatsuo
    Uchida, Hikaru
    PHYSICAL REVIEW D, 2022, 105 (03)
  • [10] Restricted Boltzmann Machines for Quantum States with Non-Abelian or Anyonic Symmetries
    Vieijra, Tom
    Casert, Corneel
    Nys, Jannes
    De Neve, Wesley
    Haegeman, Jutho
    Ryckebusch, Jan
    Verstraete, Frank
    PHYSICAL REVIEW LETTERS, 2020, 124 (09)