Curves related to Coulter's maximal curves

被引:9
|
作者
Cakcak, Emrah [2 ]
Ozbudak, Ferruh [1 ]
机构
[1] Middle E Tech Univ, Dept Math, TR-06531 Ankara, Turkey
[2] Middle E Tech Univ, Inst Appl Math, TR-06531 Ankara, Turkey
关键词
curves over finite fields; maximal curves; number of rational points; Hermitian curve;
D O I
10.1016/j.ffa.2006.10.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a class of curves over finite fields such that the maximal (respectively minimal) curves of this class form a subclass containing the set of maximal (respectively minimal) curves of Coulter (cf. [R.S. Coulter, The number of rational points of a class of Artin-Schreier curves, Finite Fields Appl. 8 (2002) 397-413, Theorem 8.12]) as a proper subset. We determine the exact number of rational points of the curves in the class and we characterize maximal (respectively minimal) curves of the class as subcovers of some suitable curves. In particular we show that Coulter's maximal curves are Galois subcovers of the appropriate Hermitian curves. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:209 / 220
页数:12
相关论文
共 50 条
  • [1] On maximal curves related to Chebyshev polynomials
    Kazemifard, Ahmad
    Tafazolian, Saeed
    Torres, Fernando
    FINITE FIELDS AND THEIR APPLICATIONS, 2018, 52 : 200 - 213
  • [2] On Maximal class index curves - On Maximal index curves
    Nagy, JV
    MATHEMATISCHE ANNALEN, 1923, 89 : 32 - 75
  • [3] On Fermat curves and maximal nodal curves
    Oka, M
    MICHIGAN MATHEMATICAL JOURNAL, 2005, 53 (02) : 459 - 477
  • [4] On maximal curves
    Fuhrmann, R
    Garcia, A
    Torres, F
    JOURNAL OF NUMBER THEORY, 1997, 67 (01) : 29 - 51
  • [5] On certain maximal curves related to Chebyshev polynomials
    Dias, Guilherme
    Tafazolian, Saeed
    Top, Jaap
    FINITE FIELDS AND THEIR APPLICATIONS, 2025, 101
  • [6] Zeta functions of trinomial curves and maximal curves
    Nie, Menglong
    FINITE FIELDS AND THEIR APPLICATIONS, 2016, 39 : 52 - 82
  • [7] On certain maximal hyperelliptic curves related to Chebyshev polynomials
    Tafazolian, Saeed
    Top, Jaap
    JOURNAL OF NUMBER THEORY, 2019, 203 : 276 - 293
  • [8] ON HARNACK MAXIMAL CURVES
    CHEVALLIER, B
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1985, 300 (04): : 109 - &
  • [9] Plane maximal curves
    Aguglia, A
    Korchmáros, G
    Torres, F
    ACTA ARITHMETICA, 2001, 98 (02) : 165 - 179
  • [10] On plane maximal curves
    Cossidente, A
    Hirschfeld, JWP
    Korchmáros, G
    Torres, F
    COMPOSITIO MATHEMATICA, 2000, 121 (02) : 163 - 181