LIO-Vehicle: A Tightly-Coupled Vehicle Dynamics Extension of LiDAR Inertial Odometry

被引:14
|
作者
Xiao, Hongru [1 ]
Han, Yanqun [1 ]
Zhao, Junqiao [2 ]
Cui, Jiafeng [1 ]
Xiong, Lu [1 ]
Yu, Zhuoping [1 ]
机构
[1] Tongji Univ, Sch Automot Studies, Shanghai 201804, Peoples R China
[2] Tongji Univ, Dept Comp Sci & Technol, Shanghai 201804, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
SLAM; localization; mapping; vehicle dynamics; COMPLEXITY; MOTION;
D O I
10.1109/LRA.2021.3126336
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
We propose LIO-Vehicle, a new tightly-coupled vehicle dynamics extension of LiDAR inertial odometry (LIO) method that provides highly accurate, robust, and real-time vehicle trajectory estimation. Since most existing LiDAR-based localization methods are not specifically proposed for vehicles, they do not take the motion constraints of ground robots into account. And they may not work well in structure-less areas, such as tunnels and narrow corridors. For LIO in these LiDAR-degraded circumstances, inertial sensors alone are unable to sustain reliable long-term accuracy due to the accumulation of errors without external periodic corrections. Therefore, it is necessary to introduce other low-cost sensors and vehicle motion constraints to build a more accurate and robust odometry algorithm. In this letter, we use wheel speedometer and steering angle sensor measurements to establish a two-degree-of-freedom vehicle dynamics model and then construct a preintegration factor based on the model's output. At the backend, we add the vehicle dynamics preintegration results, IMU preintegration measurements, and LiDAR odometry results to a factor graph and get the optimized result with the help of sliding window optimization. The experiments show that the proposed method can achieve higher positioning accuracy compared with the existing LiDAR inertial odometry methods and it can significantly mitigate navigation error in harsh areas where environmental features are insufficient for LiDAR odometry.
引用
收藏
页码:446 / 453
页数:8
相关论文
共 50 条
  • [1] LIO-SAM: Tightly-coupled Lidar Inertial Odometry via Smoothing and Mapping
    Shan, Tixiao
    Englot, Brendan
    Meyers, Drew
    Wang, Wei
    Ratti, Carlo
    Rus, Daniela
    2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2020, : 5135 - 5142
  • [2] RI-LIO: Reflectivity Image Assisted Tightly-Coupled LiDAR-Inertial Odometry
    Zhang, Yanfeng
    Tian, Yunong
    Wang, Wanguo
    Yang, Guodong
    Li, Zhishuo
    Jing, Fengshui
    Tan, Min
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (03) : 1802 - 1809
  • [3] VINS-Vehicle: A Tightly-Coupled Vehicle Dynamics Extension to Visual-Inertial State Estimator
    Kang, Rong
    Xiong, Lu
    Xu, Mingyu
    Zhao, Junqiao
    Zhang, Peizhi
    2019 IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE (ITSC), 2019, : 3593 - 3600
  • [4] LIO-GVM: An Accurate, Tightly-Coupled Lidar-Inertial Odometry With Gaussian Voxel Map
    Ji, Xingyu
    Yuan, Shenghai
    Yin, Pengyu
    Xie, Lihua
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (03) : 2200 - 2207
  • [5] LIO-LOT: Tightly-Coupled Multi-Object Tracking and LiDAR-Inertial Odometry
    Li, Xingxing
    Yan, Zhuohao
    Feng, Shaoquan
    Xia, Chunxi
    Li, Shengyu
    Zhou, Yuxuan
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2025, 26 (01) : 742 - 756
  • [6] iG-LIO: An Incremental GICP-Based Tightly-Coupled LiDAR-Inertial Odometry
    Chen, Zijie
    Xu, Yong
    Yuan, Shenghai
    Xie, Lihua
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (02) : 1883 - 1890
  • [7] InLIOM: Tightly-Coupled Intensity LiDAR Inertial Odometry and Mapping
    Wang, Hanqi
    Liang, Huawei
    Li, Zhiyuan
    Zheng, Xiaokun
    Xu, Haitao
    Zhou, Pengfei
    Kong, Bin
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (09) : 11821 - 11832
  • [8] RF-LIO: Removal-First Tightly-coupled Lidar Inertial Odometry in High Dynamic Environments
    2021 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2021, : 4421 - 4428
  • [9] Hierarchical Distribution-Based Tightly-Coupled LiDAR Inertial Odometry
    Wang, Chengpeng
    Cao, Zhiqiang
    Li, Jianjie
    Yu, Junzhi
    Wang, Shuo
    IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2024, 9 (01): : 1423 - 1435
  • [10] Tightly-coupled Lidar-inertial Odometry and Mapping in Real Time
    Dai, Wei
    Tian, Bailing
    Chen, Hongming
    PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 3258 - 3263