Clustering Categorical Data Using a Swarm-based Method

被引:0
|
作者
Izakian, Hesam [1 ]
Abraham, Ajith [1 ]
Snasel, Vaclav [2 ]
机构
[1] MIR Labs, Machine Intelligence Res Labs, Auburn, WA 98071 USA
[2] VSB Tech Univ Ostrava, Fac Elect Engn & Comp Sci, Ostrava, Czech Republic
关键词
clustering; categorical data; swarm based optimization; ALGORITHM;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The K-Modes algorithm is one of the most popular clustering algorithms in dealing with categorical data. But the random selection of starting centers in this algorithm may lead to different clustering results and falling into local optima. In this paper we proposed a swarm-based K-Modes algorithm. The experimental results over two well known Soybean and Congressional voting categorical data sets show that our method can find the optimal global solutions and can make up the K-Modes shortcoming.
引用
收藏
页码:1719 / +
页数:2
相关论文
共 50 条
  • [1] Hybrid Ant Swarm-Based Data Clustering
    Azam, Md Ali
    Hossen, Md Abir
    Rahman, Md Hafizur
    [J]. 2021 IEEE WORLD AI IOT CONGRESS (AIIOT), 2021, : 170 - 173
  • [2] Robust medical data mining using a clustering and swarm-based framework
    Shanghooshabad, Ali Mohammadi
    Abadeh, Mohammad Saniee
    [J]. INTERNATIONAL JOURNAL OF DATA MINING AND BIOINFORMATICS, 2016, 14 (01) : 22 - 39
  • [3] An energy-aware clustering method in the IoT using a swarm-based algorithm
    Sadrishojaei, Mahyar
    Navimipour, Nima Jafari
    Reshadi, Midia
    Hosseinzadeh, Mehdi
    Unal, Mehmet
    [J]. WIRELESS NETWORKS, 2022, 28 (01) : 125 - 136
  • [4] Simultaneous Clustering and Visualization of Web Usage Data using Swarm-based Intelligence
    Saka, Esin
    Nasraoui, Olfa
    [J]. 20TH IEEE INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, VOL 1, PROCEEDINGS, 2008, : 539 - 546
  • [5] An energy-aware clustering method in the IoT using a swarm-based algorithm
    Mahyar Sadrishojaei
    Nima Jafari Navimipour
    Midia Reshadi
    Mehdi Hosseinzadeh
    Mehmet Unal
    [J]. Wireless Networks, 2022, 28 : 125 - 136
  • [6] Simplifying and Improving Swarm-based Clustering
    Tan, Swee Chuan
    [J]. 2012 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2012,
  • [7] A new swarm-based efficient data clustering approach using KHM and fuzzy logic
    Yogesh Gupta
    Ashish Saini
    [J]. Soft Computing, 2019, 23 : 145 - 162
  • [8] A new swarm-based efficient data clustering approach using KHM and fuzzy logic
    Gupta, Yogesh
    Saini, Ashish
    [J]. SOFT COMPUTING, 2019, 23 (01) : 145 - 162
  • [9] Ant-based and swarm-based clustering
    Julia Handl
    Bernd Meyer
    [J]. Swarm Intelligence, 2007, 1 (2) : 95 - 113
  • [10] Swarm-based clustering algorithm for efficient web blog and data classification
    E. A. Neeba
    S. Koteeswaran
    N. Malarvizhi
    [J]. The Journal of Supercomputing, 2020, 76 : 3949 - 3962