The most stable formula for a rational interpolant for use on a finite interval is the barycentric form [1, 2]. A simple choice of the barycentric weights ensures the absence of (unwanted) poles on the real line [3]. In [4] we indicate that a more refined choice of the weights in barycentric rational interpolation can guarantee comonotonicity and coconvexity of the rational interpolant in addition to a polefree region of interest. In this presentation we generalize the above to the multivariate case. We use a product-like form of univariate barycenttic rational interpolants and indicate how the location of the poles and the shape of the function can be controlled. This functionality is of importance in the construction of mathematical models that need to express a certain trend, such as in probability distributions, economics, population dynamics, tumor growth models etc.
机构:
Univ Svizzera Italiana, Fac Informat, Via Santa 1, CH-6962 Lugano, SwitzerlandUniv Svizzera Italiana, Fac Informat, Via Santa 1, CH-6962 Lugano, Switzerland
Fuda, Chiara
Campagna, Rosanna
论文数: 0引用数: 0
h-index: 0
机构:
Univ Campania, Dipartimento Matemat & Fis, Viale Abramo Lincoln 5, I-81100 Caserta, ItalyUniv Svizzera Italiana, Fac Informat, Via Santa 1, CH-6962 Lugano, Switzerland
Campagna, Rosanna
Hormann, Kai
论文数: 0引用数: 0
h-index: 0
机构:
Univ Svizzera Italiana, Fac Informat, Via Santa 1, CH-6962 Lugano, SwitzerlandUniv Svizzera Italiana, Fac Informat, Via Santa 1, CH-6962 Lugano, Switzerland