For the double complex structure of grading-restricted vertex algebra cohomology defined in [6,7], we introduce a multiplication of elements of double complex spaces. We show that the orthogonality and bi-grading conditions applied on double complex spaces, provide in relation among mappings and actions of co-boundary operators. Thus, we endow the double complex spaces with structure of bi-graded differential algebra. We then introduce the simplest cohomology classes for a grading-restricted vertex algebra, and show their independence on the choice of mappings from double complex spaces. We prove that its cohomology class does not depend on mappings representing of the double complex spaces. Finally, we show that the orthogonality relations together with the bi-grading condition bring about generators and commutation relations for a continual Lie algebra. (C) 2021 Elsevier B.V. All rights reserved.
机构:
Perimeter Inst Theoret Phys, 31 Caroline St N, Waterloo, ON N2L 2Y5, CanadaPerimeter Inst Theoret Phys, 31 Caroline St N, Waterloo, ON N2L 2Y5, Canada
Rapcak, Miroslav
Soibelman, Yan
论文数: 0引用数: 0
h-index: 0
机构:
Kansas State Univ, Dept Math, Manhattan, KS 66506 USAPerimeter Inst Theoret Phys, 31 Caroline St N, Waterloo, ON N2L 2Y5, Canada
Soibelman, Yan
Yang, Yaping
论文数: 0引用数: 0
h-index: 0
机构:
Univ Melbourne, Sch Math & Stat, 813 Swanston St, Parkville, Vic 3010, AustraliaPerimeter Inst Theoret Phys, 31 Caroline St N, Waterloo, ON N2L 2Y5, Canada
Yang, Yaping
Zhao, Gufang
论文数: 0引用数: 0
h-index: 0
机构:
Univ Melbourne, Sch Math & Stat, 813 Swanston St, Parkville, Vic 3010, Australia
IST Austria, Campus 1, A-3400 Klosterneuburg, AustriaPerimeter Inst Theoret Phys, 31 Caroline St N, Waterloo, ON N2L 2Y5, Canada
机构:
Univ Paris 13, LAGA, UMR 7539, CNRS, F-93430 Villetaneuse, France
UPEC, F-94010 Creteil, FranceUniv Paris 13, LAGA, UMR 7539, CNRS, F-93430 Villetaneuse, France
Queguiner-Mathieu, Anne
Tignol, Jean-Pierre
论文数: 0引用数: 0
h-index: 0
机构:
Univ Konstanz, Zukunftskolleg, D-78457 Constance, Germany
Catholic Univ Louvain, ICTEAM Inst, B-1348 Louvain, BelgiumUniv Paris 13, LAGA, UMR 7539, CNRS, F-93430 Villetaneuse, France