MULTISCALE METHODS FOR ELLIPTIC PROBLEMS

被引:27
|
作者
Malqvist, Axel [1 ]
机构
[1] Uppsala Univ, Dept Informat Technol, SE-75105 Uppsala, Sweden
来源
MULTISCALE MODELING & SIMULATION | 2011年 / 9卷 / 03期
关键词
multiscale methods; error analysis; adaptivity; mixed methods; finite element method;
D O I
10.1137/090775592
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we derive a framework for multiscale approximation of elliptic problems on standard and mixed form. The method presented is based on a splitting into coarse and fine scales together with a systematic technique for approximation of the fine scale part, based on the solution of decoupled localized subgrid problems. The fine scale approximation is then used to modify the coarse scale equations. A key feature of the method is that symmetry in the bilinear form is preserved in the discrete system. Other key features are a posteriori error bounds and adaptive algorithms based on these bounds. The adaptive algorithms are used for automatic tuning of the method parameters. In the last part of the paper we present numerical examples where we apply the framework to a problem in oil reservoir simulation.
引用
下载
收藏
页码:1064 / 1086
页数:23
相关论文
共 50 条
  • [1] Multiscale methods for elliptic homogenization problems
    Chen, ZX
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2006, 22 (02) : 317 - 360
  • [2] Numerical methods for multiscale elliptic problems
    Ming, PB
    Yue, XY
    JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 214 (01) : 421 - 445
  • [3] Comparison of Four Multiscale Methods for Elliptic Problems
    Wu, Y. T.
    Nie, Y. F.
    Yang, Z. H.
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2014, 99 (04): : 297 - 325
  • [4] A framework for adaptive multiscale methods for elliptic problems
    Nolen, James
    Papanicolaou, George
    Pironneau, Olivier
    MULTISCALE MODELING & SIMULATION, 2008, 7 (01): : 171 - 196
  • [5] Edge multiscale methods for elliptic problems with heterogeneous coefficients
    Fu, Shubin
    Chung, Eric
    Li, Guanglian
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 396 : 228 - 242
  • [6] Multiscale mortar mixed methods for heterogeneous elliptic problems
    Arbogast, Todd
    Tao, Zhen
    Xiao, Hailong
    RECENT ADVANCES IN SCIENTIFIC COMPUTING AND APPLICATIONS, 2013, 586 : 9 - 21
  • [7] A comparison of multiscale methods for elliptic problems in porous media flow
    Vegard Kippe
    Jørg E. Aarnes
    Knut-Andreas Lie
    Computational Geosciences, 2008, 12 : 377 - 398
  • [8] A comparison of multiscale methods for elliptic problems in porous media flow
    Kippe, Vegard
    Aarnes, Jorg E.
    Lie, Knut-Andreas
    COMPUTATIONAL GEOSCIENCES, 2008, 12 (03) : 377 - 398
  • [9] REDUCED BASIS MULTISCALE FINITE ELEMENT METHODS FOR ELLIPTIC PROBLEMS
    Hesthaven, Jan S.
    Zhang, Shun
    Zhu, Xueyu
    MULTISCALE MODELING & SIMULATION, 2015, 13 (01): : 316 - 337
  • [10] LOCALIZATION OF ELLIPTIC MULTISCALE PROBLEMS
    Malqvist, Axel
    Peterseim, Daniel
    MATHEMATICS OF COMPUTATION, 2014, 83 (290) : 2583 - 2603