Multi-object Tracking Within Air-Traffic-Control Surveillance Videos

被引:2
|
作者
Li, Yan [1 ]
Chen, Siyuan [1 ]
Jiang, Xiaolong [1 ]
机构
[1] Beihang Univ, Sch Elect & Informat Engn, Beijing Key Lab Network Based Cooperat Air Traff, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1007/978-981-10-3476-3_9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we strive to settle Multi-object tracking (MOT) problem within Air-Traffic-Control (ATC) surveillance videos. The uniqueness and challenges of the specific problem at hand is two-fold. Firstly, the targets within ATC surveillance videos are small and demonstrate homogeneous appearance. Secondly, the number of targets within the tracking scene undergoes severe variations results from multiple reasons. To solve such a problem, we propose a method that combines the advantages of fast association algorithm and local adjustment technique under a general energy minimization framework. Specifically, a comprehensive and discriminative energy function is established to measure the probability of hypothetical movement of targets, and the optimal output of the function yields to the most responsible target state configuration. Extensive experiments prove the effectiveness of our method on this new dataset.
引用
收藏
页码:72 / 80
页数:9
相关论文
共 50 条
  • [1] VISUAL MULTI-OBJECT TRACKING VIA BI-LEVEL ASSOCIATION STRATEGY WITHIN AIR-TRAFFIC-CONTROL SURVEILLANCE VIDEOS
    Li, Yan
    Cao, Xianbin
    Chen, Siyuan
    Liu, Junying
    [J]. 2016 INTEGRATED COMMUNICATIONS NAVIGATION AND SURVEILLANCE (ICNS), 2016,
  • [2] UMTSS: a unifocal motion tracking surveillance system for multi-object tracking in videos
    Soma Hazra
    Shaurjya Mandal
    Banani Saha
    Sunirmal Khatua
    [J]. Multimedia Tools and Applications, 2023, 82 : 12401 - 12422
  • [3] UMTSS: a unifocal motion tracking surveillance system for multi-object tracking in videos
    Hazra, Soma
    Mandal, Shaurjya
    Saha, Banani
    Khatua, Sunirmal
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (08) : 12401 - 12422
  • [4] Visualization of Cross-View Multi-Object Tracking for Surveillance Videos in Crossroad
    Liu C.-H.
    Zhang L.
    Huang H.
    [J]. Huang, Hua (huahuang@bit.edu.cn), 2018, Science Press (41): : 221 - 235
  • [5] Crowdsourcing System for Multi-object Annotation in Surveillance Videos
    Zhang, Zheng
    Zhao, Zixin
    Zhang, Lan
    Li, Xiangyang
    [J]. 2022 8TH INTERNATIONAL CONFERENCE ON BIG DATA COMPUTING AND COMMUNICATIONS, BIGCOM, 2022, : 389 - 397
  • [6] Asynchronous rate control for multi-object videos
    Sun, Y
    Ahmad, I
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2005, 15 (08) : 1007 - 1018
  • [7] Depth-Aware Multi-object Tracking in Spherical Videos
    Lo Presti, Liliana
    Mazzola, Giuseppe
    Averna, Guido
    Ardizzone, Edoardo
    La Cascia, Marco
    [J]. IMAGE ANALYSIS AND PROCESSING, ICIAP 2022, PT III, 2022, 13233 : 362 - 374
  • [8] A multi-object tracking system for surveillance video analysis
    Xie, D
    Hu, WM
    Tan, TN
    Peng, J
    [J]. PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 4, 2004, : 767 - 770
  • [9] A Hierarchical Association Framework for Multi-Object Tracking in Airborne Videos
    Chen, Ting
    Pennisi, Andrea
    Li, Zhi
    Zhang, Yanning
    Sahli, Hichem
    [J]. REMOTE SENSING, 2018, 10 (09)
  • [10] Parallel algorithm implementation for multi-object tracking and surveillance
    Elbahri, Mohamed
    Taleb, Nasreddine
    Kpalma, Kidiyo
    Ronsin, Joseph
    [J]. IET COMPUTER VISION, 2016, 10 (03) : 202 - 211