Comparison of different estimators of P[Y<X] for a scaled Burr Type X distribution

被引:90
|
作者
Raqab, MZ
Kundu, D [1 ]
机构
[1] Indian Inst Technol, Dept Math & Stat, Kanpur 208016, Uttar Pradesh, India
[2] Univ Jordan, Dept Math, Amman, Jordan
关键词
asymptotic distributions; Bayes estimator; bootstrap confidence intervals; credible intervals; maximum likelihood estimator; stress-strength model;
D O I
10.1081/SAC-200055741
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, we consider the estimation of P[Y < X], when Y and X are two independent scaled Burr Type X distribution having the same scale parameters. The maximum likelihood estimator and its asymptotic distribution is used to construct an asymptotic confidence interval of P[Y < X]. Assuming that the common scale parameter is known, the maximum likelihood estimator, uniformly minimum variance unbiased estimator, and approximate Bayes estimators of P[Y < X] are discussed. Different methods and the corresponding confidence intervals are compared using Monte Carlo simulations. One data set has been analyzed for illustrative purposes.
引用
收藏
页码:465 / 483
页数:19
相关论文
共 50 条