SYMMETRIES OF THE PERIODIC TODA LATTICE,WITH AN APPLICATION TO NORMAL FORMS AND PERTURBATIONS OF THE LATTICE WITH DIRICHLET BOUNDARY CONDITIONS

被引:2
|
作者
Henrici, Andreas [1 ]
机构
[1] ZHAW Sch Engn, CH-8401 Winterthur, Switzerland
基金
瑞士国家科学基金会;
关键词
KAM theory; Birkhoff normal form; Toda lattice; perturbation theory; symmetries; HAMILTONIAN-SYSTEMS; FPU CHAINS; EQUATION;
D O I
10.3934/dcds.2015.35.2949
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Symmetries of the periodic Toda lattice are expresssed in action-angle coordinates and characterized in terms of the periodic and Dirichlet spectrum of the associated Jacobi matrices. Using these symmetries, the phase space of the lattice with Dirichlet boundary conditions is embedded into the phase space of a higher-dimensional periodic lattice. As an application, we obtain a Birkhoff normal form and a KAM theorem for the lattice with Dirichlet boundary conditions.
引用
收藏
页码:2949 / 2977
页数:29
相关论文
共 50 条
  • [1] PERTURBATIONS OF PERIODIC TODA LATTICE
    BOGOYAVLENSKY, OI
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1976, 51 (03) : 201 - 209
  • [2] Integrable boundary conditions for the Toda lattice
    Adler, VE
    Habibullin, IT
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (23): : 6717 - 6729
  • [3] Birkhoff normal form for the periodic Toda lattice
    Henrici, Andreas
    Kappeler, Thomas
    INTEGRABLE SYSTEMS AND RANDOM MATRICES: IN HONOR OF PERCY DEIFT, 2008, 458 : 11 - 29
  • [4] Lattice Boltzmann for linear elastodynamics: Periodic problems and Dirichlet boundary conditions
    Boolakee, Oliver
    Geier, Martin
    De Lorenzis, Laura
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2025, 433
  • [5] Noether and master symmetries for the Toda lattice
    Damianou, PA
    Sophocleous, C
    APPLIED MATHEMATICS LETTERS, 2005, 18 (02) : 163 - 170
  • [6] Nekhoroshev Stability for the Dirichlet Toda Lattice
    Henrici, Andreas
    SYMMETRY-BASEL, 2018, 10 (10):
  • [7] Toda lattice models with boundary
    Fujii, A
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1997, 66 (03) : 507 - 510
  • [8] Periodic supersymmetric Toda lattice hierarchy
    Gribanov, VV
    Kadyshevsky, VG
    Sorin, AS
    CZECHOSLOVAK JOURNAL OF PHYSICS, 2004, 54 (11) : 1289 - 1295
  • [9] Nekhoroshev theorem for the periodic Toda lattice
    Henrici, Andreas
    Kappeler, Thomas
    CHAOS, 2009, 19 (03)
  • [10] Quantum cohomology and the periodic Toda lattice
    Guest, MA
    Otofuji, T
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 217 (03) : 475 - 487