Predicting epileptic seizures using nonnegative matrix factorization

被引:21
|
作者
Stojanovic, Olivera [1 ]
Kuhlmann, Levin [2 ]
Pipa, Gordon [1 ]
机构
[1] Osnabruck Univ, Inst Cognit Sci, Dept Neuroinformat, Osnabruck, Germany
[2] Monash Univ, Fac Informat Technol, Data Sci & AI Grp, Clayton, Vic, Australia
来源
PLOS ONE | 2020年 / 15卷 / 02期
基金
英国医学研究理事会;
关键词
SPECTRAL POWER;
D O I
10.1371/journal.pone.0228025
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper presents a procedure for the patient-specific prediction of epileptic seizures. To this end, a combination of nonnegative matrix factorization (NMF) and smooth basis functions with robust regression is applied to power spectra of intracranial electroencephalographic (iEEG) signals. The resulting time and frequency components capture the dominant information from power spectra, while removing outliers and noise. This makes it possible to detect structure in preictal states, which is used for classification. Linear support vector machines (SVM) with L1 regularization are used to select and weigh the contributions from different number of not equally informative channels among patients. Due to class imbalance in data, synthetic minority over-sampling technique (SMOTE) is applied. The resulting method yields a computationally and conceptually simple, interpretable model of EEG signals of preictal and interictal states, which shows a good performance for the task of seizure prediction on two datasets (the EPILEPSIAE and on the public Epilepsyecosystem dataset).
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Nonnegative Matrix Factorization Using Nonnegative Polynomial Approximations
    Debals, Otto
    Van Barel, Marc
    De Lathauwer, Lieven
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2017, 24 (07) : 948 - 952
  • [2] Nonnegative Matrix Factorization
    不详
    [J]. IEEE CONTROL SYSTEMS MAGAZINE, 2021, 41 (03): : 102 - 102
  • [3] Distributional Clustering Using Nonnegative Matrix Factorization
    Zhu, Zhenfeng
    Ye, Yangdong
    [J]. PROCEEDINGS OF THE 10TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA 2012), 2012, : 4705 - 4711
  • [4] Nonnegative Matrix Factorization
    SAIBABA, A. R. V. I. N. D. K.
    [J]. SIAM REVIEW, 2022, 64 (02) : 510 - 511
  • [5] Document clustering using nonnegative matrix factorization/
    Shahnaz, F
    Berry, MW
    Pauca, VP
    Plemmons, RJ
    [J]. INFORMATION PROCESSING & MANAGEMENT, 2006, 42 (02) : 373 - 386
  • [6] Anomaly detection using nonnegative matrix factorization
    Allan, Edward G.
    Horvath, Michael R.
    Kopek, Christopher V.
    Lamb, Brian T.
    Whaples, Thomas S.
    Berry, Michael W.
    [J]. SURVEY OF TEXT MINING II: CLUSTERING, CLASSIFICATION, AND RETRIEVAL, 2008, : 203 - +
  • [7] Using underapproximations for sparse nonnegative matrix factorization
    Gillis, Nicolas
    Glineur, Francois
    [J]. PATTERN RECOGNITION, 2010, 43 (04) : 1676 - 1687
  • [8] Community discovery using nonnegative matrix factorization
    Fei Wang
    Tao Li
    Xin Wang
    Shenghuo Zhu
    Chris Ding
    [J]. Data Mining and Knowledge Discovery, 2011, 22 : 493 - 521
  • [9] Community discovery using nonnegative matrix factorization
    Wang, Fei
    Li, Tao
    Wang, Xin
    Zhu, Shenghuo
    Ding, Chris
    [J]. DATA MINING AND KNOWLEDGE DISCOVERY, 2011, 22 (03) : 493 - 521
  • [10] Nonnegative matrix factorization of a correlation matrix
    Sonneveld, P.
    van Kan, J. J. I. M.
    Huang, X.
    Oosterlee, C. W.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 431 (3-4) : 334 - 349