Facial Point Detection via Deep Neural Networks

被引:0
|
作者
Chen, Yu-wen [1 ]
Zhang, Jin [1 ]
Zhong, Kun-hua [1 ]
机构
[1] Chinese Acad Sci, Chongqing Inst Green & Intelligent Technol, 266 Fangzheng Ave,Shuitu Hitech Ind Pk, Chongqing, Peoples R China
关键词
Component; Facial keypoint; Deep neural network;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Face recognition is one of the most significant branches in computer vision research. the most fundamental but by far the most important task is facial keypoints detection, that is, to find out the locations of specific keypoints on face images In this thesis,, we are given a list of 96x96-pixel 8-bit graylevel images. The task is to predict the positions of 15 keypoints on grayscale face images. Each predicted keypoint is specified by an (x, y) real-valued pair. In experiments, we trained Deep Convolutional Network (CNN) and varied the depth and size of an architecture. The experimental results show that the network-4 which has 7 layers with the provides better results than other's model for the dataset.
引用
收藏
页码:158 / 163
页数:6
相关论文
共 50 条
  • [1] Facial Peculiarity Retrieval via Deep Neural Networks Fusion
    Li, Peiqin
    Xie, Jianbin
    Li, Zhen
    Liu, Tong
    Yan, Wei
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2018, 11 (01) : 58 - 65
  • [2] Facial Peculiarity Retrieval via Deep Neural Networks Fusion
    Peiqin Li
    Jianbin Xie
    Zhen Li
    Tong Liu
    Wei Yan
    [J]. International Journal of Computational Intelligence Systems, 2018, 11 : 58 - 65
  • [3] Facial Expression Detection by Combining Deep Learning Neural Networks
    Costache, Alexandru
    Popescu, Dan
    Ichim, Loretta
    [J]. 2021 12TH INTERNATIONAL SYMPOSIUM ON ADVANCED TOPICS IN ELECTRICAL ENGINEERING (ATEE), 2021,
  • [4] Facial point localization via neural networks in a cascade regression framework
    Anwar Saeed
    Ayoub Al-Hamadi
    Heiko Neumann
    [J]. Multimedia Tools and Applications, 2018, 77 : 2261 - 2283
  • [5] Facial point localization via neural networks in a cascade regression framework
    Saeed, Anwar
    Al-Hamadi, Ayoub
    Neumann, Heiko
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (02) : 2261 - 2283
  • [6] Facial Action Unit Detection Using Deep Neural Networks in Videos
    Akay, Simge
    Arica, Nafiz
    [J]. 2018 26TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2018,
  • [7] UAV TARGET TRACKING BY DETECTION VIA DEEP NEURAL NETWORKS
    Kassab, Mohamed A.
    Maher, Ali
    Elkazzaz, Fathy
    Zhang Baochang
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2019, : 139 - 144
  • [8] Detection of ice core particles via deep neural networks
    Maffezzoli, Niccolo
    Cook, Eliza
    van der Bilt, Willem G. M.
    Storen, Eivind N.
    Festi, Daniela
    Muthreich, Florian
    Seddon, Alistair W. R.
    Burgay, Francois
    Baccolo, Giovanni
    Mygind, Amalie R. F.
    Petersen, Troels
    Spolaor, Andrea
    Vascon, Sebastiano
    Pelillo, Marcello
    Ferretti, Patrizia
    dos Reis, Rafael S.
    Simoes, Jefferson C.
    Ronen, Yuval
    Delmonte, Barbara
    Viccaro, Marco
    Steffensen, Jorgen Peder
    Dahl-Jensen, Dorthe
    Nisancioglu, Kerim H.
    Barbante, Carlo
    [J]. CRYOSPHERE, 2023, 17 (02): : 539 - 565
  • [9] Facial image analysis for automated suicide risk detection with deep neural networks
    Rashed, Amr E. Eldin
    Atwa, Ahmed E. Mansour
    Ahmed, Ali
    Badawy, Mahmoud
    Elhosseini, Mostafa A.
    Bahgat, Waleed M.
    [J]. ARTIFICIAL INTELLIGENCE REVIEW, 2024, 57 (10)
  • [10] DeepBranch: Deep Neural Networks for Branch Point Detection in Biomedical Images
    Tan, Yinghui
    Liu, Min
    Chen, Weixun
    Wang, Xueping
    Peng, Hanchuan
    Wang, Yaonan
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2020, 39 (04) : 1195 - 1205