3D Residual Networks with Channel-Spatial Attention Module for Action Recognition

被引:1
|
作者
Yi, Ziwen [1 ]
Sun, Zhonghua [1 ]
Feng, Jinchao [2 ]
Jia, Kebin [3 ]
机构
[1] Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing, Peoples R China
[2] Beijing Univ Technol, Beijing Lab Adv Informat Networks, Beijing, Peoples R China
[3] Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
action recognition; attention module; 3D residual networks; spatio-temporal features;
D O I
10.1109/CAC51589.2020.9326923
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Effectively modeling spatio-temporal information in the videos is the key to improving the performance of action recognition. In this work, we propose 3D residual networks with channel and spatial attention modules for action recognition. The proposed network architecture can directly extract spatiotemporal features. Channel attention module and spatial attention module can effectively assist the network to learn what and where to emphasize or suppress, at virtually negligible increase in computation cost. Specifically, we sequentially add channel attention module and spatial attention module to each slice tensor of the intermediate feature map to form channel and spatial attention maps. Then the attention maps are multiplied to the input feature map to reweight important features. We validate our network through extensive experiments and visualization method on the datasets of HMDB-51 and UCF-101.
引用
收藏
页码:5171 / 5174
页数:4
相关论文
共 50 条
  • [1] 3D RANs: 3D Residual Attention Networks for action recognition
    Jiahui Cai
    Jianguo Hu
    [J]. The Visual Computer, 2020, 36 : 1261 - 1270
  • [2] 3D RANs: 3D Residual Attention Networks for action recognition
    Cai, Jiahui
    Hu, Jianguo
    [J]. VISUAL COMPUTER, 2020, 36 (06): : 1261 - 1270
  • [3] An efficient attention module for 3d convolutional neural networks in action recognition
    Jiang, Guanghao
    Jiang, Xiaoyan
    Fang, Zhijun
    Chen, Shanshan
    [J]. APPLIED INTELLIGENCE, 2021, 51 (10) : 7043 - 7057
  • [4] An efficient attention module for 3d convolutional neural networks in action recognition
    Guanghao Jiang
    Xiaoyan Jiang
    Zhijun Fang
    Shanshan Chen
    [J]. Applied Intelligence, 2021, 51 : 7043 - 7057
  • [5] Separable 3D residual attention network for human action recognition
    Zhang, Zufan
    Peng, Yue
    Gan, Chenquan
    Abate, Andrea Francesco
    Zhu, Lianxiang
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (04) : 5435 - 5453
  • [6] Separable 3D residual attention network for human action recognition
    Zufan Zhang
    Yue Peng
    Chenquan Gan
    Andrea Francesco Abate
    Lianxiang Zhu
    [J]. Multimedia Tools and Applications, 2023, 82 : 5435 - 5453
  • [7] Two-Level Attention Module Based on Spurious-3D Residual Networks for Human Action Recognition
    Chen, Bo
    Meng, Fangzhou
    Tang, Hongying
    Tong, Guanjun
    [J]. SENSORS, 2023, 23 (03)
  • [8] AR3D: Attention Residual 3D Network for Human Action Recognition
    Dong, Min
    Fang, Zhenglin
    Li, Yongfa
    Bi, Sheng
    Chen, Jiangcheng
    [J]. SENSORS, 2021, 21 (05) : 1 - 15
  • [9] Frequency-Enhanced Channel-Spatial Attention Module for Grain Pests Classification
    Yu, Junwei
    Shen, Yi
    Liu, Nan
    Pan, Quan
    [J]. AGRICULTURE-BASEL, 2022, 12 (12):
  • [10] CSINet: Channel-Spatial Fusion Networks for Asymmetric Facial Expression Recognition
    Cheng, Yan
    Kong, Defeng
    [J]. SYMMETRY-BASEL, 2024, 16 (04):