Origin of conductivity threshold in the solid electrolyte, glass system:: (Ag2S)x(As2S3)1-x

被引:14
|
作者
Holbrook, Chad [1 ]
Chen, Ping [1 ]
Novita, D. I. [1 ]
Boolchand, P. [1 ]
机构
[1] Univ Cincinnati, Dept ECECS, Cincinnati, OH 45221 USA
基金
美国国家科学基金会;
关键词
macroscopic phase separation; modulated DSC; Raman scattering; self-organization; solid electrolyte glasses;
D O I
10.1109/TNANO.2007.905540
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The electrical conductivity of (Ag2S),(x)(AS(2)S(3))(1-x) glasses increases to display a step-like jump of nearly five orders of magnitude in the narrow composition range, 9% < x < 15% range. To elucidate the origin of this threshold behavior, we have now examined the molecular structure of these glasses in modulated-differential scanning calorimetry (MDSC) and Raman scattering experiments. Our MDSC results reveal bimodal glass transition temperatures (T(g)s), a low-T-g and a high-T-g in the 7% < x < 40% range but unimodal ones outside this range. The low-Tg phase bears a similarity to that of the stoichiometric glass at x = 1/2, or AgAsS2, and we identify it with a Ag-rich phase formed in these glasses once x > 7%. The Ag-rich phase is thought to percolate near x similar to 9%, and to contribute to the,large jump in conductivity of the glasses. The high-Tg phase represents a semiconducting As2S3 glass phase alloyed with a few mole percent of Ag2S, and it displays a reversibility window in the 8% < x < 13% range. The semiconducting phase becomes elastically flexible once x > 13 %. Softening of the high-T-g phase lowers Ag+ ion migration energies and also contributes to the conductivity threshold.
引用
收藏
页码:530 / 535
页数:6
相关论文
共 50 条
  • [1] ELECTRICAL-CONDUCTIVITY OF (AG2S)(X)-(GES2)(1-X) GLASSES
    SALAM, F
    GIUNTINI, JC
    SOULAYMAN, SS
    ZANCHETTA, JV
    [J]. APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 1995, 60 (03): : 309 - 312
  • [2] TEMPERATURE STUDIES OF OPTICAL ABSORPTION EDGE IN (Ag2S)x(As2S3)1-x (x&lt;0.2) SUPERIONIC GLASSES
    Studenyak, Ihor P.
    Shpak, Olexander, I
    Kranjcec, Mladen
    Pop, Mykhailo M.
    Shpak, Ivan I.
    Kisala, Piotr
    Panas, Patryk
    Romaniuk, Ryszard
    Zhunissova, Ulzhalgas
    Ormanbekova, Ainur
    [J]. PHOTONICS APPLICATIONS IN ASTRONOMY, COMMUNICATIONS, INDUSTRY, AND HIGH ENERGY PHYSICS EXPERIMENTS 2020, 2020, 11581
  • [3] PHOTOPOLYMERIZATION OF VACUUM EVAPORATED AMORPHOUS (AS2S3)1-X(AS2SE3)X AND (AS2S3)1-X(GES2)X
    ONARI, S
    ASAI, K
    ARAI, T
    [J]. JOURNAL OF NON-CRYSTALLINE SOLIDS, 1985, 77-8 : 1215 - 1218
  • [4] A comparative Raman study of the local structure in (Ge2S3)x(As2S3)1-x and (GeS2)x(As2S3)1-x glasses
    Arsova, D
    Skordeva, E
    Nesheva, D
    Vateva, E
    Perakis, A
    Raptis, C
    [J]. GLASS PHYSICS AND CHEMISTRY, 2000, 26 (03) : 247 - 251
  • [5] DC conductivity measurements of (As2S3)1-x (AgI)x thin films
    Kolev, K.
    Petkova, T.
    Petkov, P.
    Nedeva, Y.
    [J]. JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, 2009, 11 (09): : 1244 - 1248
  • [6] Frequency-dependent ionic conductivity in (Ag2S)x(GeS2)1-x glasses
    Universite Montpellier II, Montpellier, France
    [J]. Solid State Ionics, 3-4 (235-243):
  • [7] DC conductivity measurements of (As2S3)1-x (AgI)x thin films
    Institute of Electrochemistry and Energy Systems, BAS, 1113 Sofia, Bulgaria
    不详
    [J]. J. Optoelectron. Adv. Mat., 2009, 9 (1244-1248):
  • [8] ON THE GLASS-FORMATION TENDENCY IN (PBS)X.(AS2S3)1-X, (PBS)X.(SB2S3)1-X
    BHATIA, KL
    KATYAL, SC
    SHARMA, AK
    [J]. JOURNAL OF NON-CRYSTALLINE SOLIDS, 1983, 58 (01) : 27 - 34
  • [9] Frequency-dependent ionic conductivity in (Ag2S)(x)(GeS2)(1-x) glasses
    Salam, F
    Soulayman, SS
    Giuntini, JC
    Zanchetta, JV
    [J]. SOLID STATE IONICS, 1996, 83 (3-4) : 235 - 243
  • [10] Electrical conductivity studies in (Ag3AsS3)x(As2S3)1-x superionic glasses and composites
    Studenyak, I. P.
    Neimet, Yu. Yu.
    Kranjcec, M.
    Solomon, A. M.
    Orliukas, A. F.
    Kezionis, A.
    Kazakevicius, E.
    Salkus, T.
    [J]. JOURNAL OF APPLIED PHYSICS, 2014, 115 (03)