High frequency response of near-room temperature LWIR HgCdTe heterostructure photodiodes

被引:15
|
作者
Kopytko, M. [1 ]
Jozwikowski, K. [1 ]
Jozwikowska, A. [2 ]
Rogalski, A. [1 ]
机构
[1] Mil Univ Technol, Inst Appl Phys, PL-00908 Warsaw, Poland
[2] Warsaw Univ Life Sci, Dept Econ & Stat, PL-02787 Warsaw, Poland
关键词
HgCdTe high-temperature photodiode; response time; Fourier analysis; SEMICONDUCTOR-DEVICES; FLUCTUATION PHENOMENA; NEGATIVE CAPACITANCE; DETECTORS;
D O I
10.2478/s11772-010-1035-6
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The high frequency response of near-room temperature long wavelength infrared (LWIR) HgCdTe heterostructure photodiodes is investigated using a Fourier space method. The MOCVD HgCdTe multilayer heterostructures were grown on GaAs substrates. The response time of devices as a function of bias has been measured experimentally by using 10-mu m quantum cascade laser and fast oscilloscope with suitable transimpedance amplifier. Results of theoretical predictions are compared with experimental data. It is shown that the response time at weak reverse bias condition is mainly limited by the drift time of carriers moving into pi-n+ junction. Using the reverse bias higher than 50 mV, the transit time across the absorber region limits the response time. The response time of small-area devices decreases in the region of week reverse bias achieving value below 1 ns.
引用
收藏
页码:277 / 283
页数:7
相关论文
共 50 条
  • [1] Engineering steps for optimizing high temperature LWIR HgCdTe photodiodes
    Madejczyk, Pawel
    Gawron, Waldemar
    Martyniuk, Piotr
    Keblowski, Artur
    Pusz, Wioletta
    Pawluczyk, Jaroslaw
    Kopytko, Malgorzata
    Rutkowski, Jaroslaw
    Rogalski, Antoni
    Piotrowski, Jozef
    INFRARED PHYSICS & TECHNOLOGY, 2017, 81 : 276 - 281
  • [2] High frequency response of LWIR HgCdTe photodiodes operated under zero-bias mode
    Kopytko, M.
    Martyniuk, P.
    Madejczyk, P.
    Jozwikowski, K.
    Rutkowski, J.
    OPTICAL AND QUANTUM ELECTRONICS, 2018, 50 (02)
  • [3] High frequency response of LWIR HgCdTe photodiodes operated under zero-bias mode
    Kopytko, M.
    Martyniuk, P.
    Madejczyk, P.
    Jozwikowski, K.
    Rutkowski, J.
    17TH INTERNATIONAL CONFERENCE ON NUMERICAL SIMULATION OF OPTOELECTRONIC DEVICES NUSOD 2017, 2017, : 71 - 72
  • [4] High frequency response of LWIR HgCdTe photodiodes operated under zero-bias mode
    M. Kopytko
    P. Martyniuk
    P. Madejczyk
    K. Jóźwikowski
    J. Rutkowski
    Optical and Quantum Electronics, 2018, 50
  • [5] Near-room temperature MWIR HgCdTe photodiodes limited by vacancies and dislocations related to Shockley-Read-Hall centres
    Jozwikowski, K.
    Kopytko, M.
    Piotrowski, J.
    Jozwikowska, A.
    Orman, Z.
    Rogalski, A.
    SOLID-STATE ELECTRONICS, 2011, 63 (01) : 8 - 13
  • [6] HgCdTe/CdTe/Si infrared photodetectors grown by MBE for near-room temperature operation
    S. Velicu
    G. Badano
    Y. Selamet
    C. H. Grein
    J. P. Faurie
    S. Sivananthan
    P. Boieriu
    Don Rafol
    R. Ashokan
    Journal of Electronic Materials, 2001, 30 : 711 - 716
  • [7] Analysis of the response time in high-temperature LWIR HgCdTe photodiodes operating in non-equilibrium mode
    Kopytko, M.
    Jozwikowski, K.
    Madejczyk, P.
    Pusz, W.
    Rogalski, A.
    INFRARED PHYSICS & TECHNOLOGY, 2013, 61 : 162 - 166
  • [8] Generation-recombination effects in high temperature HgCdTe heterostructure photodiodes
    Jozwikowska, A
    Jozwikowski, K
    Rutkowski, J
    Orman, Z
    Rogalski, A
    OPTO-ELECTRONICS REVIEW, 2004, 12 (04) : 417 - 428
  • [9] GAMMA-RADIATION RESPONSE OF MWIR AND LWIR HGCDTE PHOTODIODES
    WILLIAMS, GM
    VANDERWYCK, AHB
    BLAZEJEWSKI, ER
    GINN, RP
    LI, CC
    NELSON, SJ
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 1987, 34 (06) : 1592 - 1596
  • [10] HgCdTe/CdTe/Si infrared photodetectors grown by MBE for near-room temperature operation
    Velicu, S
    Badano, G
    Selamet, Y
    Grein, CH
    Faurie, JP
    Sivananthan, S
    Boieriu, P
    Rafol, D
    Ashokan, R
    JOURNAL OF ELECTRONIC MATERIALS, 2001, 30 (06) : 711 - 716