Pressure-induced anomalous enhancement of insulating state and isosymmetric structural transition in quasi-one-dimensional TiS3

被引:16
|
作者
An, Chao [1 ,2 ]
Lu, Pengchao [3 ]
Chen, Xuliang [1 ]
Zhou, Yonghui [1 ]
Wu, Juefei [3 ]
Zhou, Ying [1 ,2 ]
Park, Changyong [4 ]
Gu, Chuanchuan [1 ]
Zhang, Bowen [1 ,2 ]
Yuan, Yifang [1 ,5 ]
Sun, Jian [3 ,6 ]
Yang, Zhaorong [1 ,6 ]
机构
[1] Chinese Acad Sci, Anhui Prov Key Lab Condensed Matter Phys Extreme, High Magnet Field Lab, Hefei 230031, Anhui, Peoples R China
[2] Univ Sci & Technol China, Hefei 230026, Anhui, Peoples R China
[3] Nanjing Univ, Sch Phys, Natl Lab Solid State Microstruct, Nanjing 210093, Jiangsu, Peoples R China
[4] Carnegie Inst Sci, Geophys Lab, HPCAT, Argonne, IL 60439 USA
[5] Zhengzhou Univ, Dept Phys & Engn, Zhengzhou 450052, Henan, Peoples R China
[6] Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Jiangsu, Peoples R China
关键词
SEMICONDUCTOR; PREDICTION; GAP;
D O I
10.1103/PhysRevB.96.134110
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present in situ high-pressure synchrotron x-ray diffraction (XRD) and electrical transport measurements on quasi-one-dimensional single-crystal TiS3 up to 29.9-39.0 GPa in diamond-anvil cells, coupled with first-principles calculations. Counterintuitively, the conductive behavior of semiconductor TiS3 becomes increasingly insulating with pressure until P-C1 similar to 12 GPa, where extremes in all three axial ratios are observed. Upon further compression to P-C2 similar to 22 GPa, the XRD data evidence a structural phase transition. Based on our theoretical calculations, this structural transition is determined to be isosymmetric, i.e., without change of the structural symmetry (P2(1)/m), mainly resulting from rearrangement of the dangling S-2 pair along the a axis.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Pressure-induced superconductivity and isosymmetric structural transition in quasi-one-dimensional Ta2PdS6
    Liu, Wenhui
    Feng, Jiajia
    Hou, Qiang
    Li, Bin
    Wang, Ke
    Chen, Bin
    Li, Sheng
    Shi, Zhixiang
    PHYSICAL REVIEW B, 2024, 109 (05)
  • [2] Features of the conductivity of the quasi-one-dimensional compound TiS3
    I. G. Gorlova
    V. Ya. Pokrovskii
    S. G. Zybtsev
    A. N. Titov
    V. N. Timofeev
    Journal of Experimental and Theoretical Physics, 2010, 111 : 298 - 303
  • [3] Features of the conductivity of the quasi-one-dimensional compound TiS3
    Gorlova, I. G.
    Pokrovskii, V. Ya.
    Zybtsev, S. G.
    Titov, A. N.
    Timofeev, V. N.
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2010, 111 (02) : 298 - 303
  • [4] Collective conduction mechanism in a quasi-one-dimensional TiS3 compound
    Gorlova, I. G.
    Pokrovskii, V. Ya.
    JETP LETTERS, 2009, 90 (04) : 295 - 298
  • [5] Nonlinear conductivity of quasi-one-dimensional layered compound TiS3
    Gorlova, I. G.
    Zybtsev, S. G.
    Pokrovskii, V. Ya
    Bolotina, N. B.
    Verin, I. A.
    Titov, A. N.
    PHYSICA B-CONDENSED MATTER, 2012, 407 (11) : 1707 - 1710
  • [6] Thermoelectric Properties for a Suspended Microribbon of Quasi-One-Dimensional TiS3
    Sakuma, Tasuku
    Nishino, Shunsuke
    Miyata, Masanobu
    Koyano, Mikio
    JOURNAL OF ELECTRONIC MATERIALS, 2018, 47 (06) : 3177 - 3183
  • [7] Controlling hysteretic transitions in quasi-one-dimensional TiS3 microribbons
    Zhu, Hua
    Han, Hui
    Wu, Dun
    Wu, Lin
    Liu, Wenhui
    Tang, Xi
    Xu, Junmin
    Zhang, Changjin
    Li, Hui
    APPLIED PHYSICS LETTERS, 2022, 121 (01)
  • [8] Logarithmic Relaxation of the Photoconductivity of a Quasi-One-Dimensional TiS3 Semiconductor
    Gorlova, I. G.
    Zybtsev, S. G.
    Pokrovskii, V. Ya.
    Nikonov, S. A.
    Zaitsev-Zotov, S. V.
    Titov, A. N.
    JETP LETTERS, 2024, 120 (02) : 133 - 139
  • [9] Collective conduction mechanism in a quasi-one-dimensional TiS3 compound
    I. G. Gorlova
    V. Ya. Pokrovskii
    JETP Letters, 2009, 90 : 295 - 298
  • [10] Thermoelectric Properties for a Suspended Microribbon of Quasi-One-Dimensional TiS3
    Tasuku Sakuma
    Shunsuke Nishino
    Masanobu Miyata
    Mikio Koyano
    Journal of Electronic Materials, 2018, 47 : 3177 - 3183