Salient Object Detection via Multiple Instance Joint Re-Learning

被引:49
|
作者
Ma, Guangxiao [1 ]
Chen, Chenglizhao [1 ,2 ]
Li, Shuai [3 ]
Peng, Chong [2 ]
Hao, Aimin [1 ,3 ]
Qin, Hong [4 ]
机构
[1] Beihang Univ, Qingdao Res Inst, Qingdao 266100, Peoples R China
[2] Qingdao Univ, Qingdao 266071, Peoples R China
[3] Beihang Univ, Sch Comp Sci & Engn, Beijing 100191, Peoples R China
[4] SUNY Stony Brook, Stony Brook, NY 11794 USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Feature extraction; Object detection; Saliency detection; Visualization; Deep learning; Correlation; Topology; Salient Object Detection Inter-image Corres-pondence; Multiple Instance Learning; Joint Re-Learning; VIDEO; OPTIMIZATION; DRIVEN; FUSION; MODEL;
D O I
10.1109/TMM.2019.2929943
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In recent years deep neural networks have been widely applied to visual saliency detection tasks with remarkable detection performance improvements. As for the salient object detection in single image, the automatically computed convolutional features frequently demonstrate high discriminative power to distinguish salient foregrounds from its non-salient surroundings in most cases. Yet, the obstinate feature conflicts still persist, which naturally gives rise to the learning ambiguity, arriving at massive failure detections. To solve such problem, we propose to jointly re-learn common consistency of inter-image saliency and then use it to boost the detection performance. Its core rationale is to utilize the easy-to-detect cases to re-boost much harder ones. Compared with the conventional methods, which focus on their problem domain within the single image scope, our method attempts to utilize those beyond-scope information to facilitate the current salient object detection. To validate our new approach, we have conducted a comprehensive quantitative comparisons between our approach and 13 state-of-the-art methods over 5 publicly available benchmarks, and all the results suggest the advantage of our approach in terms of accuracy, reliability, and versatility.
引用
收藏
页码:324 / 336
页数:13
相关论文
共 50 条
  • [1] Salient Object Detection via Multiple Instance Learning
    Huang, Fang
    Qi, Jinqing
    Lu, Huchuan
    Zhang, Lihe
    Ruan, Xiang
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (04) : 1911 - 1922
  • [2] Salient-aware multiple instance learning optimized network for weakly supervised object detection
    Zhang, Han
    Wang, Yongfang
    Yang, Yingjie
    VISUAL COMPUTER, 2024, 40 (11): : 8227 - 8242
  • [3] Salient Object Detection via Integrity Learning
    Zhuge, Mingchen
    Fan, Deng-Ping
    Liu, Nian
    Zhang, Dingwen
    Xu, Dong
    Shao, Ling
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (03) : 3738 - 3752
  • [4] Salient Object Detection via Bootstrap Learning
    Tong, Na
    Lu, Huchuan
    Ruan, Xiang
    Yang, Ming-Hsuan
    2015 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2015, : 1884 - 1892
  • [5] Multiple Instance Active Learning for Object Detection
    Yuan, Tianning
    Wan, Fang
    Fu, Mengying
    Liu, Jianzhuang
    Xu, Songcen
    Ji, Xiangyang
    Ye, Qixiang
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 5326 - 5335
  • [6] Salient Instance Selection for Multiple-Instance Learning
    Yuan, Liming
    Liu, Songbo
    Huang, Qingcheng
    Liu, Jiafeng
    Tang, Xianglong
    NEURAL INFORMATION PROCESSING, ICONIP 2012, PT III, 2012, 7665 : 58 - 67
  • [7] Salient object detection via multiple saliency weights
    Weimin Tan
    Bo Yan
    Multimedia Tools and Applications, 2017, 76 : 25091 - 25107
  • [8] Salient Object Detection via Multiple Random Walks
    Zhai, Jiyou
    Zhou, Jingbo
    Ren, Yongfeng
    Wang, Zhijian
    KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2016, 10 (04): : 1712 - 1731
  • [9] Salient object detection via multiple saliency weights
    Tan, Weimin
    Yan, Bo
    MULTIMEDIA TOOLS AND APPLICATIONS, 2017, 76 (23) : 25091 - 25107
  • [10] Multiple Instance Differentiation Learning for Active Object Detection
    Wan, Fang
    Ye, Qixiang
    Yuan, Tianning
    Xu, Songcen
    Liu, Jianzhuang
    Ji, Xiangyang
    Huang, Qingming
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (10) : 12133 - 12147